scholarly journals Hexose fluxes, mediated by vacuolar SWEET transporters, are important for xylem development in the inflorescence stem of Arabidopsis thaliana

2020 ◽  
Author(s):  
Emilie Aubry ◽  
Beate Hoffmann ◽  
Françoise Vilaine ◽  
Françoise Gilard ◽  
Patrick A.W. Klemens ◽  
...  

ABSTRACTIn higher plants, the development of the vascular system is controlled by a complex network of transcription factors. However, how nutrient availability in the vascular cells affects their development remains to be addressed. At the cellular level, cytosolic sugar availability is regulated mainly by sugar exchanges at the tonoplast through active and/or facilitated transport. In Arabidopsis thaliana, among the tonoplastic transporters, SWEET16 and SWEET17 have been previously localized in the vascular system. Here, using a reverse genetic approach, we propose that sugar exchanges at the tonoplast, mediated by SWEET16, are important for xylem cell division as revealed in particular by the decreased number of xylem cells in the swt16 mutant and the expression of SWEET16 at the procambium-xylem boundary. In addition, we demonstrate that transport of hexoses mediated by SWEET16 and/or SWEET17 is required to sustain the formation of the xylem secondary cell wall. This result is in line with a defect in the xylem cell wall composition as measured by FTIR in the swt16swt17 double mutant and by upregulation of several genes involved in secondary cell wall synthesis. Our work therefore supports a model in which xylem development is partially dependent on the exchange of hexoses at the tonoplast of xylem-forming cells.

2010 ◽  
Vol 153 (2) ◽  
pp. 580-589 ◽  
Author(s):  
Jozsef Stork ◽  
Darby Harris ◽  
Jonathan Griffiths ◽  
Brian Williams ◽  
Fred Beisson ◽  
...  

2020 ◽  
Vol 62 (10) ◽  
pp. 1607-1624
Author(s):  
Xiaojiao Hu ◽  
Yang Cui ◽  
Xiaomin Lu ◽  
Weibin Song ◽  
Lei Lei ◽  
...  

2020 ◽  
Vol 40 (10) ◽  
Author(s):  
Mengling Sun ◽  
Zhengxiu Ye ◽  
Jiafu Tan ◽  
Sheng Chen ◽  
Xianlong Zhang ◽  
...  

Planta ◽  
2010 ◽  
Vol 232 (1) ◽  
pp. 95-108 ◽  
Author(s):  
Ko Hirano ◽  
Toshihisa Kotake ◽  
Kumiko Kamihara ◽  
Kahori Tsuna ◽  
Tsutomu Aohara ◽  
...  

2007 ◽  
Vol 34 (1) ◽  
pp. 1 ◽  
Author(s):  
Yong-Ling Ruan

Higher plants comprise mixtures of some 40 different cell types, and this often complicates the interpretation of data obtained at the tissue level. Studies for a given cell type may provide novel insights into the mechanisms underlying defined cellular and developmental processes. In this regard, the cotton fibre represents an excellent single-cell model to study the control of rapid cell elongation and cellulose synthesis. These single cells, initiated from the ovule epidermis at anthesis, typically elongate to ~3–5 cm in the tetraploid species before they switch to intensive secondary cell wall cellulose synthesis. By maturity, more than 94% of fibre weight is cellulose. To unravel the mechanisms of fibre elongation and cellulose synthesis, two hypotheses have been examined: (a) that sucrose degradation and utilisation mediated by sucrose synthase (Sus) may play roles in fibre development and (b) that symplastic isolation of the fibre cells may be required for their rapid elongation. Reverse genetic and biochemical analyses have revealed the critical role that Sus plays in fibre initiation and early elongation. Late in development, plasma-membrane and cell wall association of Sus protein seems to be involved in rapid cellulose synthesis. Cell biology and gene expression studies showed a temporary closure of fibre plasmodesmata (PD), probably due to the deposition of callose, at the rapid phase of elongation. The duration of the PD closure correlates positively with the final fibre length attained. These data support the view that PD closure may be required for fibres to achieve extended elongation. The branching of PD towards the secondary cell wall stage is postulated to function as a molecule sieve for tight control of macromolecule trafficking into fibres to sustain intensive cellulose synthesis.


Author(s):  
Emmanuel Panteris ◽  
Anna Kouskouveli ◽  
Dimitris Pappas ◽  
Ioannis-Dimosthenis S. Adamakis

Cytokinesis is accomplished in higher plants by the phragmoplast, creating and conducting the cell plate, to separate daughter nuclei by a new cell wall. The microtubule-severing enzyme p60-katanin plays an important role in the centrifugal expansion and timely disappearance of phragmoplast microtubules. Consequently, aberrant structure and delayed expansion rate of the phragmoplast occur in p60-katanin mutants. Here, the consequences of p60-katanin malfunction in cell plate/daughter wall formation were investigated by transmission electron microscopy (TEM), while deviations in the chemical composition of cell plate/new cell wall were identified by immunolabeling and confocal microscopy, in root cells of the fra2 Arabidopsis thaliana mutant. It was found that, apart from defective phragmoplast microtubule organization, cell plates/new cell walls appeared also faulty in structure, being unevenly thick and perforated by large gaps. In addition, demethylesterified homogalacturonans were prematurely present in fra2 cell plates, while callose content was significantly lower than in the wild-type. Furthermore, KNOLLE syntaxin disappeared from newly formed cell walls in fra2 earlier than in the wild-type. Taken together, these observations indicate that delayed cytokinesis, due to faulty phragmoplast organization and expansion, results in a loss of synchronization between cell plate growth and its chemical maturation.


2021 ◽  
Vol 118 (5) ◽  
pp. e2010911118
Author(s):  
Chang Liu ◽  
Hasi Yu ◽  
Xiaolan Rao ◽  
Laigeng Li ◽  
Richard A. Dixon

Plant secondary cell-wall (SCW) deposition and lignification are affected by both seasonal factors and abiotic stress, and these responses may involve the hormone abscisic acid (ABA). However, the mechanisms involved are not clear. Here we show that mutations that limit ABA synthesis or signaling reduce the extent of SCW thickness and lignification in Arabidopsis thaliana through the core ABA-signaling pathway involving SnRK2 kinases. SnRK2.2. 3 and 6 physically interact with the SCW regulator NAC SECONDARY WALL THICKENING PROMOTING FACTOR 1 (NST1), a NAC family transcription factor that orchestrates the transcriptional activation of a suite of downstream SCW biosynthesis genes, some of which are involved in the biosynthesis of cellulose and lignin. This interaction leads to phosphorylation of NST1 at Ser316, a residue that is highly conserved among NST1 proteins from dicots, but not monocots, and is required for transcriptional activation of downstream SCW-related gene promoters. Loss of function of NST1 in the snd1 mutant background results in lack of SCWs in the interfascicular fiber region of the stem, and the Ser316Ala mutant of NST1 fails to complement this phenotype and ABA-induced lignin pathway gene expression. The discovery of NST1 as a key substrate for phosphorylation by SnRK2 suggests that the ABA-mediated core-signaling cascade provided land plants with a hormone-modulated, competitive desiccation-tolerance strategy allowing them to differentiate water-conducting and supporting tissues built of cells with thicker cell walls.


Sign in / Sign up

Export Citation Format

Share Document