scholarly journals AIM: A Network Model of Attention in Auditory Cortex

2020 ◽  
Author(s):  
Kenny F. Chou ◽  
Kamal Sen

AbstractAttentional modulation of cortical networks is critical for the cognitive flexibility required to process complex scenes. Current theoretical frameworks for attention are based almost exclusively on studies in visual cortex, where attentional effects are typically modest and excitatory. In contrast, attentional effects in auditory cortex can be large and suppressive. A theoretical framework for explaining attentional effects in auditory cortex is lacking, preventing a broader understanding of cortical mechanisms underlying attention. Here, we present a cortical network model of attention in primary auditory cortex (A1). A key mechanism in our network is attentional inhibitory modulation (AIM) of cortical inhibitory neurons. In this mechanism, top-down inhibitory neurons disinhibit bottom-up cortical circuits, a prominent circuit motif observed in sensory cortex. Our results reveal that the same underlying mechanisms in the AIM network can explain diverse attentional effects on both spatial and frequency tuning in A1. We find that a dominant effect of disinhibition on cortical tuning is suppressive, consistent with experimental observations. Functionally, the AIM network may play a key role in solving the cocktail party problem. We demonstrate how attention can guide the AIM network to monitor an acoustic scene, select a specific target, or switch to a different target, providing flexible outputs for solving the cocktail party problem.

2021 ◽  
Vol 17 (8) ◽  
pp. e1009356
Author(s):  
Kenny F. Chou ◽  
Kamal Sen

Attentional modulation of cortical networks is critical for the cognitive flexibility required to process complex scenes. Current theoretical frameworks for attention are based almost exclusively on studies in visual cortex, where attentional effects are typically modest and excitatory. In contrast, attentional effects in auditory cortex can be large and suppressive. A theoretical framework for explaining attentional effects in auditory cortex is lacking, preventing a broader understanding of cortical mechanisms underlying attention. Here, we present a cortical network model of attention in primary auditory cortex (A1). A key mechanism in our network is attentional inhibitory modulation (AIM) of cortical inhibitory neurons. In this mechanism, top-down inhibitory neurons disinhibit bottom-up cortical circuits, a prominent circuit motif observed in sensory cortex. Our results reveal that the same underlying mechanisms in the AIM network can explain diverse attentional effects on both spatial and frequency tuning in A1. We find that a dominant effect of disinhibition on cortical tuning is suppressive, consistent with experimental observations. Functionally, the AIM network may play a key role in solving the cocktail party problem. We demonstrate how attention can guide the AIM network to monitor an acoustic scene, select a specific target, or switch to a different target, providing flexible outputs for solving the cocktail party problem.


2021 ◽  
Vol 15 ◽  
Author(s):  
Wenlu Pan ◽  
Jing Pan ◽  
Yan Zhao ◽  
Hongzheng Zhang ◽  
Jie Tang

Serotonin transporter (SERT) modulates the level of 5-HT and significantly affects the activity of serotonergic neurons in the central nervous system. The manipulation of SERT has lasting neurobiological and behavioral consequences, including developmental dysfunction, depression, and anxiety. Auditory disorders have been widely reported as the adverse events of these mental diseases. It is unclear how SERT impacts neuronal connections/interactions and what mechanism(s) may elicit the disruption of normal neural network functions in auditory cortex. In the present study, we report on the neuronal morphology and function of auditory cortex in SERT knockout (KO) mice. We show that the dendritic length of the fourth layer (L-IV) pyramidal neurons and the second-to-third layer (L-II/III) interneurons were reduced in the auditory cortex of the SERT KO mice. The number and density of dendritic spines of these neurons were significantly less than those of wild-type neurons. Also, the frequency-tonotopic organization of primary auditory cortex was disrupted in SERT KO mice. The auditory neurons of SERT KO mice exhibited border frequency tuning with high-intensity thresholds. These findings indicate that SERT plays a key role in development and functional maintenance of auditory cortical neurons. Auditory function should be examined when SERT is selected as a target in the treatment for psychiatric disorders.


1999 ◽  
Vol 82 (5) ◽  
pp. 2327-2345 ◽  
Author(s):  
Jagmeet S. Kanwal ◽  
Douglas C. Fitzpatrick ◽  
Nobuo Suga

Mustached bats, Pteronotus parnellii parnellii,emit echolocation pulses that consist of four harmonics with a fundamental consisting of a constant frequency (CF1-4) component followed by a short, frequency-modulated (FM1-4) component. During flight, the pulse fundamental frequency is systematically lowered by an amount proportional to the velocity of the bat relative to the background so that the Doppler-shifted echo CF2 is maintained within a narrowband centered at ∼61 kHz. In the primary auditory cortex, there is an expanded representation of 60.6- to 63.0-kHz frequencies in the “Doppler-shifted CF processing” (DSCF) area where neurons show sharp, level-tolerant frequency tuning. More than 80% of DSCF neurons are facilitated by specific frequency combinations of ∼25 kHz (BFlow) and ∼61 kHz (BFhigh). To examine the role of these neurons for fine frequency discrimination during echolocation, we measured the basic response parameters for facilitation to synthesized echolocation signals varied in frequency, intensity, and in their temporal structure. Excitatory response areas were determined by presenting single CF tones, facilitative curves were obtained by presenting paired CF tones. All neurons showing facilitation exhibit at least two facilitative response areas, one of broad spectral tuning to frequencies centered at BFlowcorresponding to a frequency in the lower half of the echolocation pulse FM1 sweep and another of sharp tuning to frequencies centered at BFhigh corresponding to the CF2 in the echo. Facilitative response areas for BFhigh are broadened by ∼0.38 kHz at both the best amplitude and 50 dB above threshold response and show lower thresholds compared with the single-tone excitatory BFhigh response areas. An increase in the sensitivity of DSCF neurons would lead to target detection from farther away and/or for smaller targets than previously estimated on the basis of single-tone responses to BFhigh. About 15% of DSCF neurons show oblique excitatory and facilitatory response areas at BFhigh so that the center frequency of the frequency-response function at any amplitude decreases with increasing stimulus amplitudes. DSCF neurons also have inhibitory response areas that either skirt or overlap both the excitatory and facilitatory response areas for BFhigh and sometimes for BFlow. Inhibition by a broad range of frequencies contributes to the observed sharpness of frequency tuning in these neurons. Recordings from orthogonal penetrations show that the best frequencies for facilitation as well as excitation do not change within a cortical column. There does not appear to be any systematic representation of facilitation ratios across the cortical surface of the DSCF area.


Neuron ◽  
2019 ◽  
Vol 104 (6) ◽  
pp. 1029-1031
Author(s):  
Elia Formisano ◽  
Lars Hausfeld

1998 ◽  
Vol 80 (5) ◽  
pp. 2743-2764 ◽  
Author(s):  
Jos J. Eggermont

Eggermont, Jos J. Representation of spectral and temporal sound features in three cortical fields of the cat. Similarities outweigh differences. J. Neurophysiol. 80: 2743–2764, 1998. This study investigates the degree of similarity of three different auditory cortical areas with respect to the coding of periodic stimuli. Simultaneous single- and multiunit recordings in response to periodic stimuli were made from primary auditory cortex (AI), anterior auditory field (AAF), and secondary auditory cortex (AII) in the cat to addresses the following questions: is there, within each cortical area, a difference in the temporal coding of periodic click trains, amplitude-modulated (AM) noise bursts, and AM tone bursts? Is there a difference in this coding between the three cortical fields? Is the coding based on the temporal modulation transfer function (tMTF) and on the all-order interspike-interval (ISI) histogram the same? Is the perceptual distinction between rhythm and roughness for AM stimuli related to a temporal versus spatial representation of AM frequency in auditory cortex? Are interarea differences in temporal response properties related to differences in frequency tuning? The results showed that: 1) AM stimuli produce much higher best modulation frequencies (BMFs) and limiting rates than periodic click trains. 2) For periodic click trains and AM noise, the BMFs and limiting rates were not significantly different for the three areas. However, for AM tones the BMF and limiting rates were about a factor 2 lower in AAF compared with the other areas. 3) The representation of stimulus periodicity in ISIs resulted in significantly lower mean BMFs and limiting rates compared with those estimated from the tMTFs. The difference was relatively small for periodic click trains but quite large for both AM stimuli, especially in AI and AII. 4) Modulation frequencies <20 Hz were represented in the ISIs, suggesting that rhythm is coded in auditory cortex in temporal fashion. 5) In general only a modest interdependence of spectral- and temporal-response properties in AI and AII was found. The BMFs were correlated positively with characteristic frequency in AAF. The limiting rate was positively correlated with the frequency-tuning curve bandwidth in AI and AII but not in AAF. Only in AAF was a correlation between BMF and minimum latency was found. Thus whereas differences were found in the frequency-tuning curve bandwidth and minimum response latencies among the three areas, the coding of periodic stimuli in these areas was fairly similar with the exception of the very poor representation of AM tones in AII. This suggests a strong parallel processing organization in auditory cortex.


Neuroreport ◽  
1996 ◽  
Vol 7 (3) ◽  
pp. 753-757 ◽  
Author(s):  
Jos J. Eggermont ◽  
Geoff M. Smith

2015 ◽  
Vol 112 (52) ◽  
pp. 16036-16041 ◽  
Author(s):  
Federico De Martino ◽  
Michelle Moerel ◽  
Kamil Ugurbil ◽  
Rainer Goebel ◽  
Essa Yacoub ◽  
...  

Columnar arrangements of neurons with similar preference have been suggested as the fundamental processing units of the cerebral cortex. Within these columnar arrangements, feed-forward information enters at middle cortical layers whereas feedback information arrives at superficial and deep layers. This interplay of feed-forward and feedback processing is at the core of perception and behavior. Here we provide in vivo evidence consistent with a columnar organization of the processing of sound frequency in the human auditory cortex. We measure submillimeter functional responses to sound frequency sweeps at high magnetic fields (7 tesla) and show that frequency preference is stable through cortical depth in primary auditory cortex. Furthermore, we demonstrate that—in this highly columnar cortex—task demands sharpen the frequency tuning in superficial cortical layers more than in middle or deep layers. These findings are pivotal to understanding mechanisms of neural information processing and flow during the active perception of sounds.


2018 ◽  
Author(s):  
Huan-huan Zeng ◽  
Jun-feng Huang ◽  
Ming Chen ◽  
Yun-qing Wen ◽  
Zhi-ming Shen ◽  
...  

AbstractMarmoset has emerged as a useful non-human primate species for studying the brain structure and function. Previous studies on the mouse primary auditory cortex (A1) showed that neurons with preferential frequency tuning responses are mixed within local cortical regions, despite a large-scale tonotopic organization. Here we found that frequency tuning properties of marmoset A1 neurons are highly uniform within local cortical regions. We first defined tonotopic map of A1 using intrinsic optical imaging, and then used in vivo two-photon calcium imaging of large neuronal populations to examine the tonotopic preference at the single-cell level. We found that tuning preferences of layer 2/3 neurons were highly homogeneous over hundreds of micrometers in both horizontal and vertical directions. Thus, marmoset A1 neurons are distributed in a tonotopic manner at both macro- and microscopic levels. Such organization is likely to be important for the organization of auditory circuits in the primate brain.


Sign in / Sign up

Export Citation Format

Share Document