scholarly journals Testing the efficacy of hyperspectral (AVIRIS-NG), multispectral (Sentinel-2) and radar (Sentinel-1) remote sensing images to detect native and invasive non-native trees

2021 ◽  
Author(s):  
M Arasumani ◽  
Aditya Singh ◽  
Milind Bunyan ◽  
V.V. Robin

AbstractInvasive alien species (IAS) threaten tropical grasslands and native biodiversity and impact ecosystem service delivery, ecosystem function, and associated human livelihoods. Tropical grasslands have been dramatically and disproportionately lost to invasion by trees. The invasion continues to move rapidly into the remaining fragmented grasslands impacting various native grassland-dependent species and water streamflow in tropical montane habitats. The Shola Sky Islands of the Western Ghats host a mosaic of native grasslands and forests; of which the grasslands have been lost to exotic tree invasion (Acacias, Eucalyptus and Pines) since the 1950s. The invasion intensities, however, differ between these species wherein Acacia mearnsii and Pinus patula are highly invasive in contrast to Eucalyptus globulus. These disparities necessitate distinguishing these species for effective grassland restoration. Further, these invasive alien trees are highly intermixed with native species, thus requiring high discrimination abilities to native species apart from the non-native species.Here we assess the accuracy of various satellite and airborne remote sensing sensors and machine learning classification algorithms to identify the spatial extent of native habitats and invasive trees. Specifically, we test Sentinel-1 SAR and Sentinel-2 multispectral data and assess high spatial and spectral resolution AVIRIS-NG imagery identifying invasive species across this landscape. Sensor combinations thus include hyperspectral, multispectral and radar data and present tradeoffs in associated costs and ease of procurement. Classification methods tested include Support Vector Machine (SVM), Classification and Regression Trees (CART) and Random Forest (RF) algorithms implemented on the Google Earth Engine platform. Results indicate that AVIRIS-NG data in combination with SVM recover the highest classification skill (Overall −98%, Kappa-0.98); while CART and RF yielded < 90% accuracy. Fused Sentinel-1 and Sentinel-2 produce 91% accuracy, while Sentinel-2 alone yielded 91% accuracy with RF and SVM classification; but only with higher coverage of ground control points. AVIRIS-NG imagery was able to accurately (97%) demarcate the Acacia invasion front while Sentinel-1 and Sentinel-2 data failed. Our results suggest that Sentinel-2 images could be useful for detecting the native and non-native forests with more ground truth points, but hyperspectral data (AVIRIS-NG) permits distinguishing, native and non-native tree species and recent invasions with high precision using limited ground truth points. We suspect that large areas will have to be mapped and assessed in the coming years by conservation managers, NGOs to plan restoration, or to assess the success of restoration activities, and several data procurement and analysis steps may have to be simplified.

2021 ◽  
Vol 13 (4) ◽  
pp. 586
Author(s):  
Salvatore Praticò ◽  
Francesco Solano ◽  
Salvatore Di Fazio ◽  
Giuseppe Modica

The sustainable management of natural heritage is presently considered a global strategic issue. Owing to the ever-growing availability of free data and software, remote sensing (RS) techniques have been primarily used to map, analyse, and monitor natural resources for conservation purposes. The need to adopt multi-scale and multi-temporal approaches to detect different phenological aspects of different vegetation types and species has also emerged. The time-series composite image approach allows for capturing much of the spectral variability, but presents some criticalities (e.g., time-consuming research, downloading data, and the required storage space). To overcome these issues, the Google Earth engine (GEE) has been proposed, a free cloud-based computational platform that allows users to access and process remotely sensed data at petabyte scales. The application was tested in a natural protected area in Calabria (South Italy), which is particularly representative of the Mediterranean mountain forest environment. In the research, random forest (RF), support vector machine (SVM), and classification and regression tree (CART) algorithms were used to perform supervised pixel-based classification based on the use of Sentinel-2 images. A process to select the best input image (seasonal composition strategies, statistical operators, band composition, and derived vegetation indices (VIs) information) for classification was implemented. A set of accuracy indicators, including overall accuracy (OA) and multi-class F-score (Fm), were computed to assess the results of the different classifications. GEE proved to be a reliable and powerful tool for the classification process. The best results (OA = 0.88 and Fm = 0.88) were achieved using RF with the summer image composite, adding three VIs (NDVI, EVI, and NBR) to the Sentinel-2 bands. SVM and RF produced OAs of 0.83 and 0.80, respectively.


Author(s):  
J. P. Clemente ◽  
G. Fontanelli ◽  
G. G. Ovando ◽  
Y. L. B. Roa ◽  
A. Lapini ◽  
...  

Abstract. Remote sensing has become an important mean to assess crop areas, specially for the identification of crop types. Google Earth Engine (GEE) is a free platform that provides a large number of satellite images from different constellations. Moreover, GEE provides pixel-based classifiers, which are used for mapping agricultural areas. The objective of this work is to evaluate the performance of different classification algorithms such as Minimum Distance (MD), Random Forest (RF), Support Vector Machine (SVM), Classification and Regression Trees (CART) and Na¨ıve Bayes (NB) on an agricultural area in Tuscany (Italy). Four different scenarios were implemented in GEE combining different information such as optical and Synthetic Aperture Radar (SAR) data, indices and time series. Among the five classifiers used the best performers were RF and SVM. Integrating Sentinel-1 (S1) and Sentinel-2 (S2) slightly improves the classification in comparison to the only S2 image classifications. The use of time series substantially improves supervised classifications. The analysis carried out so far lays the foundation for the integration of time series of SAR and optical data.


2020 ◽  
pp. 35
Author(s):  
M. Campos-Taberner ◽  
F.J. García-Haro ◽  
B. Martínez ◽  
M.A. Gilabert

<p class="p1">The use of deep learning techniques for remote sensing applications has recently increased. These algorithms have proven to be successful in estimation of parameters and classification of images. However, little effort has been made to make them understandable, leading to their implementation as “black boxes”. This work aims to evaluate the performance and clarify the operation of a deep learning algorithm, based on a bi-directional recurrent network of long short-term memory (2-BiLSTM). The land use classification in the Valencian Community based on Sentinel-2 image time series in the framework of the common agricultural policy (CAP) is used as an example. It is verified that the accuracy of the deep learning techniques is superior (98.6 % overall success) to that other algorithms such as decision trees (DT), k-nearest neighbors (k-NN), neural networks (NN), support vector machines (SVM) and random forests (RF). The performance of the classifier has been studied as a function of time and of the predictors used. It is concluded that, in the study area, the most relevant information used by the network in the classification are the images corresponding to summer and the spectral and spatial information derived from the red and near infrared bands. These results open the door to new studies in the field of the explainable deep learning in remote sensing applications.</p>


10.29007/hbs2 ◽  
2019 ◽  
Author(s):  
Juan Carlos Valdiviezo-Navarro ◽  
Adan Salazar-Garibay ◽  
Karla Juliana Rodríguez-Robayo ◽  
Lilián Juárez ◽  
María Elena Méndez-López ◽  
...  

Maya milpa is one of the most important agrifood systems in Mesoamerica, not only because its ancient origin but also due to lead an increase in landscape diversity and to be a relevant source of families food security and food sovereignty. Nowadays, satellite remote sensing data, as the multispectral images of Sentinel-2 platforms, permit us the monitor- ing of different kinds of structures such as water bodies, urban areas, and particularly agricultural fields. Through its multispectral signatures, mono-crop fields or homogeneous vegetation zones like corn fields, barley fields, or other ones, have been successfully detected by using classification techniques with multispectral images. However, Maya milpa is a complex field which is conformed by different kinds of vegetables species and fragments of natural vegetation that in conjunction cannot be considered as a mono-crop field. In this work, we show some preliminary studies on the availability of monitoring this complex system in a region of interest in Yucatan, through a support vector machine (SVM) approach.


Author(s):  
P. Wicaksono ◽  
P. Danoedoro ◽  
U. Nehren ◽  
A. Maishella ◽  
M. Hafizt ◽  
...  

Abstract. Remote sensing can make seagrass aboveground carbon stock (AGCseagrass) information spatially extensive and widely available. Therefore, it is necessary to develop a rapid approach to estimate AGCseagrass in the field to train and assess its remote sensing-based mapping. The aim of this research is to (1) analyze the Percent Cover (PCv)-AGCseagrass relationship in seagrass at the species and community levels to estimate AGCseagrass from PCv and (2) perform AGCseagrass mapping at both levels using WorldView-2 image and assess the accuracy of the resulting map. This research was conducted in Karimunjawa and Kemujan Islands, Indonesia. Support Vector Machine (SVM) classification was used to map seagrass species composition, and stepwise regression was used to model AGCseagrass using deglint, water column corrected, and principle component bands. The results were a rapid AGCseagrass estimation using an easily measured parameter, the seagrass PCv. At the community level, the AGCseagrass map had 58.79% accuracy (SEE = 5.41 g C m−2), whereas at the species level, the accuracy increased for the class Ea (64.73%, SEE = 6.86 g C m−2) and EaThCr (70.02%, SEE = 4.32 g C m−2) but decreased for ThCr (55.08%, SEE = 2.55 g C m−2). The results indicate that WorldView-2 image reflectance can accurately map AGCseagrass in the study area in the range of 15–20 g C m−2 for Ea, 10–15 g C m−2 for EaThCr, and 4–8 g C m−2 for ThCr. Based on our model, the AGCseagrass in the study area was estimated at 13.39 t C.


2021 ◽  
Vol 13 (19) ◽  
pp. 3956
Author(s):  
Shan He ◽  
Huaiyong Shao ◽  
Wei Xian ◽  
Shuhui Zhang ◽  
Jialong Zhong ◽  
...  

Hilly areas are important parts of the world’s landscape. A marginal phenomenon can be observed in some hilly areas, leading to serious land abandonment. Extracting the spatio-temporal distribution of abandoned land in such hilly areas can protect food security, improve people’s livelihoods, and serve as a tool for a rational land plan. However, mapping the distribution of abandoned land using a single type of remote sensing image is still challenging and problematic due to the fragmentation of such hilly areas and severe cloud pollution. In this study, a new approach by integrating Linear stretch (Ls), Maximum Value Composite (MVC), and Flexible Spatiotemporal DAta Fusion (FSDAF) was proposed to analyze the time-series changes and extract the spatial distribution of abandoned land. MOD09GA, MOD13Q1, and Sentinel-2 were selected as the basis of remote sensing images to fuse a monthly 10 m spatio-temporal data set. Three pieces of vegetation indices (VIs: ndvi, savi, ndwi) were utilized as the measures to identify the abandoned land. A multiple spatio-temporal scales sample database was established, and the Support Vector Machine (SVM) was used to extract abandoned land from cultivated land and woodland. The best extraction result with an overall accuracy of 88.1% was achieved by integrating Ls, MVC, and FSDAF, with the assistance of an SVM classifier. The fused VIs image set transcended the single source method (Sentinel-2) with greater accuracy by a margin of 10.8–23.6% for abandoned land extraction. On the other hand, VIs appeared to contribute positively to extract abandoned land from cultivated land and woodland. This study not only provides technical guidance for the quick acquirement of abandoned land distribution in hilly areas, but it also provides strong data support for the connection of targeted poverty alleviation to rural revitalization.


2020 ◽  
Vol 12 (21) ◽  
pp. 3539
Author(s):  
Haifeng Tian ◽  
Jie Pei ◽  
Jianxi Huang ◽  
Xuecao Li ◽  
Jian Wang ◽  
...  

Garlic and winter wheat are major economic and grain crops in China, and their boundaries have increased substantially in recent decades. Updated and accurate garlic and winter wheat maps are critical for assessing their impacts on society and the environment. Remote sensing imagery can be used to monitor spatial and temporal changes in croplands such as winter wheat and maize. However, to our knowledge, few studies are focusing on garlic area mapping. Here, we proposed a method for coupling active and passive satellite imagery for the identification of both garlic and winter wheat in Northern China. First, we used passive satellite imagery (Sentinel-2 and Landsat-8 images) to extract winter crops (garlic and winter wheat) with high accuracy. Second, we applied active satellite imagery (Sentinel-1 images) to distinguish garlic from winter wheat. Third, we generated a map of the garlic and winter wheat by coupling the above two classification results. For the evaluation of classification, the overall accuracy was 95.97%, with a kappa coefficient of 0.94 by eighteen validation quadrats (3 km by 3 km). The user’s and producer’s accuracies of garlic are 95.83% and 95.85%, respectively; and for the winter wheat, these two accuracies are 97.20% and 97.45%, respectively. This study provides a practical exploration of targeted crop identification in mixed planting areas using multisource remote sensing data.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Bin Yang ◽  
Chunxiang Cao ◽  
Ying Xing ◽  
Xiaowen Li

It is a challenge to obtain accurate result in remote sensing images classification, which is affected by many factors. In this paper, aiming at correctly identifying land use types reflec ted in remote sensing images, support vector machine, maximum likelihood classifier, backpropagation neural network, fuzzy c-means, and minimum distance classifier were combined to construct three multiple classifier systems (MCSs). Two MCSs were implemented, namely, comparative major voting (CMV) and Bayesian average (BA). One method called WA-AHP was proposed, which introduced analytic hierarchy process into MCS. Classification results of base classifiers and MCSs were compared with the ground truth map. Accuracy indicators were computed and receiver operating characteristic curves were illustrated, so as to evaluate the performance of MCSs. Experimental results show that employing MCSs can increase classification accuracy significantly, compared with base classifiers. From the accuracy evaluation result and visual check, the best MCS is WA-AHP with overall accuracy of 94.2%, which overmatches BA and rivals CMV in this paper. The producer’s accuracy of each land use type proves the good performance of WA-AHP. Therefore, we can draw the conclusion that MCS is superior to base classifiers in remote sensing image classification, and WA-AHP is an efficient MCS.


Author(s):  
D. Attaf ◽  
K. Djerriri ◽  
D. Mansour ◽  
D. Hamdadou

<p><strong>Abstract.</strong> Mapping of burned areas caused by forest fires was always a main concern to researchers in the field of remote sensing. Thus, various spectral indices and classification techniques have been proposed in the literature. In such a problem, only one specific class is of real interest and could be referred to as a one-class classification problem. One-class classification methods are highly desirable for quick mapping of classes of interest. A common used solution to deal with One-Class classification problem is based on oneclass support vector machine (OC-SVM). This method has proved useful in classification of remote sensing images. However, overfitting problem and difficulty in tuning parameters have become the major obstacles for this method. The new Presence and Background Learning (PBL) framework does not require complicated model selection and can generate very high accuracy results. On the other hand the Google Earth Engine (GEE) portal provides access to satellite and other ancillary data, cloud computing, and algorithms for processing large amounts of data with relative ease. Therefore, this study mainly aims to investigate the possibility of using the PBL framework within the GEE platform to extract burned areas from freely available Landsat archive in the year 2015. The quality of the results obtained using PBL framework was assessed using ground truth digitized by qualified technicians and compared to other classification techniques: Thresholding burned area spectral Index (BAI) and OC-SVM classifiers. Experimental results demonstrate that PBL framework for mapping the burned areas shows the higher classification accuracy than the other classifiers, and it highlights the suitability for the cases with few positive labelled samples available, which facilitates the tedious work of manual digitizing.</p>


Author(s):  
◽  
S. S. Ray

<p><strong>Abstract.</strong> Crop Classification and recognition is a very important application of Remote Sensing. In the last few years, Machine learning classification techniques have been emerging for crop classification. Google Earth Engine (GEE) is a platform to explore the multiple satellite data with different advanced classification techniques without even downloading the satellite data. The main objective of this study is to explore the ability of different machine learning classification techniques like, Random Forest (RF), Classification And Regression Trees (CART) and Support Vector Machine (SVM) for crop classification. High Resolution optical data, Sentinel-2, MSI (10&amp;thinsp;m) was used for crop classification in the Indian Agricultural Research Institute (IARI) farm for the Rabi season 2016 for major crops. Around 100 crop fields (~400 Hectare) in IARI were analysed. Smart phone-based ground truth data were collected. The best cloud free image of Sentinel 2 MSI data (5 Feb 2016) was used for classification using automatic filtering by percentage cloud cover property using the GEE. Polygons as feature space was used as training data sets based on the ground truth data for crop classification using machine learning techniques. Post classification, accuracy assessment analysis was done through the generation of the confusion matrix (producer and user accuracy), kappa coefficient and F value. In this study it was found that using GEE through cloud platform, satellite data accessing, filtering and pre-processing of satellite data could be done very efficiently. In terms of overall classification accuracy and kappa coefficient, Random Forest (93.3%, 0.9178) and CART (73.4%, 0.6755) classifiers performed better than SVM (74.3%, 0.6867) classifier. For validation, Field Operation Service Unit (FOSU) division of IARI, data was used and encouraging results were obtained.</p>


Sign in / Sign up

Export Citation Format

Share Document