scholarly journals Extraction of Abandoned Land in Hilly Areas Based on the Spatio-Temporal Fusion of Multi-Source Remote Sensing Images

2021 ◽  
Vol 13 (19) ◽  
pp. 3956
Author(s):  
Shan He ◽  
Huaiyong Shao ◽  
Wei Xian ◽  
Shuhui Zhang ◽  
Jialong Zhong ◽  
...  

Hilly areas are important parts of the world’s landscape. A marginal phenomenon can be observed in some hilly areas, leading to serious land abandonment. Extracting the spatio-temporal distribution of abandoned land in such hilly areas can protect food security, improve people’s livelihoods, and serve as a tool for a rational land plan. However, mapping the distribution of abandoned land using a single type of remote sensing image is still challenging and problematic due to the fragmentation of such hilly areas and severe cloud pollution. In this study, a new approach by integrating Linear stretch (Ls), Maximum Value Composite (MVC), and Flexible Spatiotemporal DAta Fusion (FSDAF) was proposed to analyze the time-series changes and extract the spatial distribution of abandoned land. MOD09GA, MOD13Q1, and Sentinel-2 were selected as the basis of remote sensing images to fuse a monthly 10 m spatio-temporal data set. Three pieces of vegetation indices (VIs: ndvi, savi, ndwi) were utilized as the measures to identify the abandoned land. A multiple spatio-temporal scales sample database was established, and the Support Vector Machine (SVM) was used to extract abandoned land from cultivated land and woodland. The best extraction result with an overall accuracy of 88.1% was achieved by integrating Ls, MVC, and FSDAF, with the assistance of an SVM classifier. The fused VIs image set transcended the single source method (Sentinel-2) with greater accuracy by a margin of 10.8–23.6% for abandoned land extraction. On the other hand, VIs appeared to contribute positively to extract abandoned land from cultivated land and woodland. This study not only provides technical guidance for the quick acquirement of abandoned land distribution in hilly areas, but it also provides strong data support for the connection of targeted poverty alleviation to rural revitalization.

2020 ◽  
Vol 12 (3) ◽  
pp. 503
Author(s):  
Li ◽  
Chen ◽  
Foody ◽  
Wang ◽  
Yang ◽  
...  

The generation of land cover maps with both fine spatial and temporal resolution would aid the monitoring of change on the Earth’s surface. Spatio-temporal sub-pixel land cover mapping (STSPM) uses a few fine spatial resolution (FR) maps and a time series of coarse spatial resolution (CR) remote sensing images as input to generate FR land cover maps with a temporal frequency of the CR data set. Traditional STSPM selects spatially adjacent FR pixels within a local window as neighborhoods to model the land cover spatial dependence, which can be a source of error and uncertainty in the maps generated by the analysis. This paper proposes a new STSPM using FR remote sensing images that pre- and/or post-date the CR image as ancillary data to enhance the quality of the FR map outputs. Spectrally similar pixels within the locality of a target FR pixel in the ancillary data are likely to represent the same land cover class and hence such same-class pixels can provide spatial information to aid the analysis. Experimental results showed that the proposed STSPM predicted land cover maps more accurately than two comparative state-of-the-art STSPM algorithms.


2021 ◽  
Vol 13 (8) ◽  
pp. 1507
Author(s):  
Haibo Wang ◽  
Jianchao Qi ◽  
Yufei Lei ◽  
Jun Wu ◽  
Bo Li ◽  
...  

Automatic detection of newly constructed building areas (NCBAs) plays an important role in addressing issues of ecological environment monitoring, urban management, and urban planning. Compared with low-and-middle resolution remote sensing images, high-resolution remote sensing images are superior in spatial resolution and display of refined spatial details. Yet its problems of spectral heterogeneity and complexity have impeded research of change detection for high-resolution remote sensing images. As generalized machine learning (including deep learning) technologies proceed, the efficiency and accuracy of recognition for ground-object in remote sensing have been substantially improved, providing a new solution for change detection of high-resolution remote sensing images. To this end, this study proposes a refined NCBAs detection method consisting of four parts based on generalized machine learning: (1) pre-processing; (2) candidate NCBAs are obtained by means of bi-temporal building masks acquired by deep learning semantic segmentation, and then registered one by one; (3) rules and support vector machine (SVM) are jointly adopted for classification of NCBAs with high, medium and low confidence; and (4) the final vectors of NCBAs are obtained by post-processing. In addition, area-based and pixel-based methods are adopted for accuracy assessment. Firstly, the proposed method is applied to three groups of GF1 images covering the urban fringe areas of Jinan, whose experimental results are divided into three categories: high, high-medium, and high-medium-low confidence. The results show that NCBAs of high confidence share the highest F1 score and the best overall effect. Therefore, only NCBAs of high confidence are considered to be the final detection result by this method. Specifically, in NCBAs detection for three groups GF1 images in Jinan, the mean Recall of area-based and pixel-based assessment methods reach around 77% and 91%, respectively, the mean Pixel Accuracy (PA) 88% and 92%, and the mean F1 82% and 91%, confirming the effectiveness of this method on GF1. Similarly, the proposed method is applied to two groups of ZY302 images in Xi’an and Kunming. The scores of F1 for two groups of ZY302 images are also above 90% respectively, confirming the effectiveness of this method on ZY302. It can be concluded that adoption of area registration improves registration efficiency, and the joint use of prior rules and SVM classifier with probability features could avoid over and missing detection for NCBAs. In practical applications, this method is contributive to automatic NCBAs detection from high-resolution remote sensing images.


2018 ◽  
Vol 10 (7) ◽  
pp. 1123 ◽  
Author(s):  
Yuhang Zhang ◽  
Hao Sun ◽  
Jiawei Zuo ◽  
Hongqi Wang ◽  
Guangluan Xu ◽  
...  

Aircraft type recognition plays an important role in remote sensing image interpretation. Traditional methods suffer from bad generalization performance, while deep learning methods require large amounts of data with type labels, which are quite expensive and time-consuming to obtain. To overcome the aforementioned problems, in this paper, we propose an aircraft type recognition framework based on conditional generative adversarial networks (GANs). First, we design a new method to precisely detect aircrafts’ keypoints, which are used to generate aircraft masks and locate the positions of the aircrafts. Second, a conditional GAN with a region of interest (ROI)-weighted loss function is trained on unlabeled aircraft images and their corresponding masks. Third, an ROI feature extraction method is carefully designed to extract multi-scale features from the GAN in the regions of aircrafts. After that, a linear support vector machine (SVM) classifier is adopted to classify each sample using their features. Benefiting from the GAN, we can learn features which are strong enough to represent aircrafts based on a large unlabeled dataset. Additionally, the ROI-weighted loss function and the ROI feature extraction method make the features more related to the aircrafts rather than the background, which improves the quality of features and increases the recognition accuracy significantly. Thorough experiments were conducted on a challenging dataset, and the results prove the effectiveness of the proposed aircraft type recognition framework.


Sensors ◽  
2018 ◽  
Vol 18 (2) ◽  
pp. 498 ◽  
Author(s):  
Hong Zhu ◽  
Xinming Tang ◽  
Junfeng Xie ◽  
Weidong Song ◽  
Fan Mo ◽  
...  

2020 ◽  
pp. 35
Author(s):  
M. Campos-Taberner ◽  
F.J. García-Haro ◽  
B. Martínez ◽  
M.A. Gilabert

<p class="p1">The use of deep learning techniques for remote sensing applications has recently increased. These algorithms have proven to be successful in estimation of parameters and classification of images. However, little effort has been made to make them understandable, leading to their implementation as “black boxes”. This work aims to evaluate the performance and clarify the operation of a deep learning algorithm, based on a bi-directional recurrent network of long short-term memory (2-BiLSTM). The land use classification in the Valencian Community based on Sentinel-2 image time series in the framework of the common agricultural policy (CAP) is used as an example. It is verified that the accuracy of the deep learning techniques is superior (98.6 % overall success) to that other algorithms such as decision trees (DT), k-nearest neighbors (k-NN), neural networks (NN), support vector machines (SVM) and random forests (RF). The performance of the classifier has been studied as a function of time and of the predictors used. It is concluded that, in the study area, the most relevant information used by the network in the classification are the images corresponding to summer and the spectral and spatial information derived from the red and near infrared bands. These results open the door to new studies in the field of the explainable deep learning in remote sensing applications.</p>


10.29007/hbs2 ◽  
2019 ◽  
Author(s):  
Juan Carlos Valdiviezo-Navarro ◽  
Adan Salazar-Garibay ◽  
Karla Juliana Rodríguez-Robayo ◽  
Lilián Juárez ◽  
María Elena Méndez-López ◽  
...  

Maya milpa is one of the most important agrifood systems in Mesoamerica, not only because its ancient origin but also due to lead an increase in landscape diversity and to be a relevant source of families food security and food sovereignty. Nowadays, satellite remote sensing data, as the multispectral images of Sentinel-2 platforms, permit us the monitor- ing of different kinds of structures such as water bodies, urban areas, and particularly agricultural fields. Through its multispectral signatures, mono-crop fields or homogeneous vegetation zones like corn fields, barley fields, or other ones, have been successfully detected by using classification techniques with multispectral images. However, Maya milpa is a complex field which is conformed by different kinds of vegetables species and fragments of natural vegetation that in conjunction cannot be considered as a mono-crop field. In this work, we show some preliminary studies on the availability of monitoring this complex system in a region of interest in Yucatan, through a support vector machine (SVM) approach.


Author(s):  
Gordana Kaplan ◽  
Ugur Avdan

Wetlands benefits can be summarized but are not limited to their ability to store floodwaters and improve water quality, providing habitats for wildlife and supporting biodiversity, as well as aesthetic values. Over the past few decades, remote sensing and geographical information technologies has proven to be a useful and frequent applications in monitoring and mapping wetlands. Combining both optical and microwave satellite data can give significant information about the biophysical characteristics of wetlands and wetlands` vegetation. Also, fusing data from different sensors, such as radar and optical remote sensing data, can increase the wetland classification accuracy. In this paper we investigate the ability of fusion two fine spatial resolution satellite data, Sentinel-2 and the Synthetic Aperture Radar Satellite, Sentinel-1, for mapping wetlands. As a study area in this paper, Balikdami wetland located in the Anatolian part of Turkey has been selected. Both Sentinel-1 and Sentinel-2 images require pre-processing before their use. After the pre-processing, several vegetation indices calculated from the Sentinel-2 bands were included in the data set. Furthermore, an object-based classification was performed. For the accuracy assessment of the obtained results, number of random points were added over the study area. In addition, the results were compared with data from Unmanned Aerial Vehicle collected on the same data of the overpass of the Sentinel-2, and three days before the overpass of Sentinel-1 satellite. The accuracy assessment showed that the results significant and satisfying in the wetland classification using both multispectral and microwave data. The statistical results of the fusion of the optical and radar data showed high wetland mapping accuracy, with an overall classification accuracy of approximately 90% in the object-based classification. Compared with the high resolution UAV data, the classification results give promising results for mapping and monitoring not just wetlands, but also the sub-classes of the study area. For future research, multi-temporal image use and terrain data collection are recommended.


GEOMATICA ◽  
2021 ◽  
pp. 1-23
Author(s):  
Roholah Yazdan ◽  
Masood Varshosaz ◽  
Saied Pirasteh ◽  
Fabio Remondino

Automatic detection and recognition of traffic signs from images is an important topic in many applications. At first, we segmented the images using a classification algorithm to delineate the areas where the signs are more likely to be found. In this regard, shadows, objects having similar colours, and extreme illumination changes can significantly affect the segmentation results. We propose a new shape-based algorithm to improve the accuracy of the segmentation. The algorithm works by incorporating the sign geometry to filter out the wrong pixels from the classification results. We performed several tests to compare the performance of our algorithm against those obtained by popular techniques such as Support Vector Machine (SVM), K-Means, and K-Nearest Neighbours. In these tests, to overcome the unwanted illumination effects, the images are transformed into colour spaces Hue, Saturation, and Intensity, YUV, normalized red green blue, and Gaussian. Among the traditional techniques used in this study, the best results were obtained with SVM applied to the images transformed into the Gaussian colour space. The comparison results also suggested that by adding the geometric constraints proposed in this study, the quality of sign image segmentation is improved by 10%–25%. We also comparted the SVM classifier enhanced by incorporating the geometry of signs with a U-Shaped deep learning algorithm. Results suggested the performance of both techniques is very close. Perhaps the deep learning results could be improved if a more comprehensive data set is provided.


Sign in / Sign up

Export Citation Format

Share Document