scholarly journals Infant gut strain persistence is associated with maternal origin, phylogeny, and functional potential including surface adhesion and iron acquisition

2021 ◽  
Author(s):  
Yue Clare Lou ◽  
Matthew R. Olm ◽  
Spencer Diamond ◽  
Alexander Crits-Christoph ◽  
Brian A. Firek ◽  
...  

SUMMARYGut microbiome succession impacts infant development. However, it remains unclear what factors promote persistence of initial bacterial colonists in the developing gut. Here, we performed strain-resolved metagenomic analyses to compare gut colonization of preterm and full-term infants throughout the first year of life and evaluated links between strain persistence and strain origin as well as genetic potential. Analysis of 206 fecal metagenomes collected from full-term and preterm infants and their mothers revealed that infants’ initially distinct microbial communities converged by age one. Approximately 11% of early colonists, primarily Bacteroides and Bifidobacterium, persisted during the first year of life, and these were more prevalent in full-term compared to preterm infants. Gut-associated strains from mothers were significantly more likely to persist in the infant gut than other strains. Enrichment in genes for surface adhesion, iron acquisition and carbohydrate degradation may explain persistence of some strains through the first year of life.

Nutrients ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 2412
Author(s):  
Sonia González ◽  
Marta Selma-Royo ◽  
Silvia Arboleya ◽  
Cecilia Martínez-Costa ◽  
Gonzalo Solís ◽  
...  

The early life gut microbiota has been reported to be involved in neonatal weight gain and later infant growth. Therefore, this early microbiota may constitute a target for the promotion of healthy neonatal growth and development with potential consequences for later life. Unfortunately, we are still far from understanding the association between neonatal microbiota and weight gain and growth. In this context, we evaluated the relationship between early microbiota and weight in a cohort of full-term infants. The absolute levels of specific fecal microorganisms were determined in 88 vaginally delivered and 36 C-section-delivered full-term newborns at 1 month of age and their growth up to 12 months of age. We observed statistically significant associations between the levels of some early life gut microbes and infant weight gain during the first year of life. Classifying the infants into tertiles according to their Staphylococcus levels at 1 month of age allowed us to observe a significantly lower weight at 12 months of life in the C-section-delivered infants from the highest tertile. Univariate and multivariate models pointed out associations between the levels of some fecal microorganisms at 1 month of age and weight gain at 6 and 12 months. Interestingly, these associations were different in vaginally and C-section-delivered babies. A significant direct association between Staphylococcus and weight gain at 1 month of life was observed in vaginally delivered babies, whereas in C-section-delivered infants, lower Bacteroides levels at 1 month were associated with higher later weight gain (at 6 and 12 months). Our results indicate an association between the gut microbiota and weight gain in early life and highlight potential microbial predictors for later weight gain.


2020 ◽  
Vol 65 (7) ◽  
pp. 405-410
Author(s):  
I. V. Gorbacheva ◽  
O. U. Kuznetsova ◽  
F. N. Gilmiyarova ◽  
D. V. Pechkurov ◽  
L. N. Vinogradova

Comparative analysis of energy-plastic exchange indicators in mature and premature children of the first year of life in the development of protein-energy malnutrition (PEM) was carried out. Unidirectional changes are revealed, including an increase in creatinine, lactate and creatine phosphokinase activity levels, suggesting a n increasing muscle mass deficit against the background of glucose anaerobic oxidation activation. In preterm infants, glucose and triacylglicerine levels decrease, which reflects uncompensated insufficiency of energy substrates and, accordingly, ATP level. Multidirectional deviations in metabolism are pyruvate and ATP content: increase in full-term infants and decrease in preterm infants, that should be taken into account when monitoring condition of children with PEM. A significant decrease of pyruvic acid in preterm infants against the background of the levels of total protein, albumin, hemoglobin, and transferrin, not exceeding reference values, can obviously testify to the active use of this integral metabolite to maintain the fund of substituted amino acids. Development of this pathology in both mature and premature infants creates a pre-morbid background for iron deficiency anemia-diagnostic panel, which should be supplemented by calculation of transferrin saturation coefficient. Regardless of gestational age in childbirth during the formation of PEM, the lipid spectrum is rearranged according to atherogenic type: at normal values of total cholesterol, there is a significant increase in low and very low density lipoproteins with an increase in the atherogenicity coefficient. This singles out children with the pathology in question as a risk group for the development of the atherosclerotic process later, which justifies the recommendation to control the lipid profile in children of the first year of life.


2018 ◽  
Author(s):  
Alex Grier ◽  
Andrew McDavid ◽  
Bokai Wang ◽  
Xing Qiu ◽  
James Java ◽  
...  

ABSTRACTBackground: Postnatal development of the microbiota in early life influences immunity, metabolism, neurodevelopment and long-term infant health. Microbiome development occurs at multiple body sites, each with distinct community compositions and functions. Associations between microbiota at multiple sites represent an unexplored influence on the infant microbiome. Here, we examined co-occurrence patterns of gut and respiratory microbiota in pre- and full-term infants over the first year of life, a period critical to neonatal development and risk of respiratory diseases.Results: Gut and respiratory microbiota collected as longitudinal rectal, throat and nasal samples from 38 pre-term and 44 full-term infants were first clustered into community state types (CSTs) on the basis of their composition. Multiple methods were used to relate the occurrence of CSTs to several measures of infant maturity, including gestational age (GA) at birth, week of life (WOL), and post menstrual age (PMA: equal to GA plus WOL). Manifestation of CSTs followed one of three patterns with respect to infant maturity. First, chronological: independent of infant maturity (GA) at birth, and strongly associated with post-natal age (WOL). Second, idiosyncratic: primarily dependent on maturity (GA) at birth, with persistent differences in CST occurrence between pre- and full-term infants through the first year of life. Third, convergent: CSTs appear earlier in infants with greater maturity (GA) at birth, but after a sufficient post-natal interval their occurrence in pre-term infants reaches parity with full-term infants. The composition of CSTs was highly dissimilar between different body sites, but the CST of any one body site was highly predictive of the CSTs at other body sites. There were significant associations between the abundance of individual taxa at each body site and the CSTs of the other body sites, which persisted after stringent control for the non-linear effects of infant maturity. Significant canonical correlations exist between the microbiota composition at each pair of body sites, with the strongest correlations between more proximal locations.Conclusion: Cross-body site associations of developing infant microbiota suggest the importance of research and clinical practices that focus on dynamic interactions between multiple microbial communities to elucidate and promote systemic microbiota development.


2019 ◽  
Vol 61 (10) ◽  
pp. 967-977 ◽  
Author(s):  
Nadia Cristina Valentini ◽  
Keila Ruttnig Guidony Pereira ◽  
Eloá Maria dos Santos Chiquetti ◽  
Cibelle Kayenne Martins Roberto Formiga ◽  
Maria Beatriz Martins Linhares

Sign in / Sign up

Export Citation Format

Share Document