scholarly journals Chemogenetic activation of nigrostriatal dopamine neurons in freely moving common marmosets

Author(s):  
Koki Mimura ◽  
Yuji Nagai ◽  
Ken-ichi Inoue ◽  
Jumpei Matsumoto ◽  
Yukiko Hori ◽  
...  

To interrogate particular neuronal pathways in non-human primates under natural and stress-free conditions, we applied designer receptors exclusively activated by designer drugs (DREADDs) technology to common marmosets. We injected adeno-associated virus vectors expressing the excitatory DREADD hM3Dq into the unilateral substantia nigra in three marmosets. Using multi-tracer positron emission tomography imaging, we detected DREADD expression in vivo, which was confirmed in nigrostriatal dopamine neurons by immunohisto-chemistry, and assessed activation of the substantia nigra and dopamine release following agonist administration. The marmosets rotated in a contralateral direction relative to the activated side 30–90 min after consuming food containing the highly potent DREADD agonist deschloroclozapine (DCZ), but not on the following days without DCZ. These results indicate that non-invasive and reversible DREADD manipulation will extend the utility of marmoset as a primate model for linking neuronal activity and natural behavior in various contexts.

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Rayul Wi ◽  
Young Cheul Chung ◽  
Byung Kwan Jin ◽  
Lihua Duan

The present study examined whether crosstalk between cannabinoid (CB) and transient potential receptor vanilloid type 1 (TRPV1) could contribute to the survival of nigrostriatal dopamine neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson’s disease (PD). MPTP induced a significant loss of nigrostriatal dopamine neurons and glial activation in the substantia nigra (SN) and striatum (STR) as visualized by tyrosine hydroxylase (TH) or macrophage antigen complex-1 (MAC-1) or glial fibrillary acidic protein (GFAP) immunocytochemistry, respectively. RT-PCR analysis shows the upregulation of inducible nitric oxide synthase, interleukin-1β, and tumor necrosis factor-α in microglia in the SN in vivo, indicating the activation of the inflammatory system. By contrast, treatment with capsaicin (a specific TRPV1 agonist) increased the survival of dopamine neurons in the SN and their fibers and dopamine levels in the STR in MPTP mice. Capsaicin neuroprotection is accompanied by inhibiting MPTP-induced glial activation and production of inflammatory cytokines. Treatment with AM251 and AM630 (CB1/2 antagonists) abolished capsaicin-induced beneficial effects, indicating the existence of a functional crosstalk between CB and TRPV1. Moreover, treatment with anandamide (an endogenous agonist for both CB and TRVP1) rescued nigrostriatal dopamine neurons and reduced gliosis-derived neuroinflammatory responses in MPTP mice. These results suggest that the cannabinoid and vanilloid system may be beneficial for the treatment of neurodegenerative diseases, such as PD, that are associated with neuroinflammation.


2019 ◽  
Author(s):  
Arun Kumar Mahato ◽  
Juho-Matti Renko ◽  
Jaakko Kopra ◽  
Tanel Visnapuu ◽  
Ilari Korhonen ◽  
...  

AbstractMotor symptoms of Parkinson’s disease (PD) are caused by degeneration and progressive loss of nigrostriatal dopamine neurons. Currently no cure for this disease is available. Existing drugs alleviate PD symptoms, but fail to halt neurodegeneration. Glial cell line-derived neurotrophic factor (GDNF) is able to protect and repair dopamine neurons in vitro and in animal models of PD, but its clinical use is complicated by pharmacokinetic properties. In the present study we demonstrate the ability of a small molecule agonist of GDNF receptor RET to support the survival of cultured dopamine neurons only when they express GDNF receptors. In addition, BT13 activates intracellular signaling cascades in vivo, stimulates release of dopamine and protect the function of dopaminergic neurons in a 6-hydroxydopamine (6-OHDA) rat model of PD. In contrast to GDNF, BT13 is able to penetrate through the blood-brain-barrier. Thus, BT13 serves as an excellent tool compound for the development of novel disease-modifying treatments against PD.


iScience ◽  
2021 ◽  
Vol 24 (9) ◽  
pp. 103066 ◽  
Author(s):  
Koki Mimura ◽  
Yuji Nagai ◽  
Ken-ichi Inoue ◽  
Jumpei Matsumoto ◽  
Yukiko Hori ◽  
...  

Author(s):  
Lu Wang ◽  
Yayun Yan ◽  
Liyao Zhang ◽  
Yan Liu ◽  
Ruirui Luo ◽  
...  

AbstractNeuromelanin (NM) is a dark pigment that mainly exists in neurons of the substantia nigra pars compacta (SNc). In Parkinson disease (PD) patients, NM concentration decreases gradually with degeneration and necrosis of dopamine neurons, suggesting potential use as a PD biomarker. We aimed to evaluate associations between NM concentration in in vivo SN and PD progression and different motor subtypes using NM magnetic resonance imaging (NM-MRI). Fifty-four patients with idiopathic PD were enrolled. Patients were divided into groups by subtypes with different clinical symptoms: tremor dominant (TD) group and postural instability and gait difficulty (PIGD) group. Fifteen healthy age-matched volunteers were enrolled as controls. All subjects underwent clinical assessment and NM-MRI examination. PD patients showed significantly decreased contrast-to-noise ratio (CNR) values in medial and lateral SN (P < 0.05) compared to controls. CNR values in lateral SN region decreased linearly with PD progression (P = 0.001). PIGD patients showed significant decreases in CNR mean values in lateral SN compared to TD patients (P = 0.004). Diagnostic accuracy of using lateral substantia nigra (SN) in TD and PIGD groups was 79% (sensitivity 76.5%, specificity 78.6%). NM concentration in PD patients decreases gradually during disease progression and differs significantly between PD subtypes. NM may be a reliable biomarker for PD severity and subtype identification.


Sign in / Sign up

Export Citation Format

Share Document