scholarly journals Role of transmembrane spanning domain 1 in cystic fibrosis transmembrane conductance regulator folding

2021 ◽  
Author(s):  
Anna E. Patrick ◽  
Linda Millen ◽  
Philip J. Thomas

AbstractCystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) protein that disrupt its folding pathway. The most common mutation causing CF is a deletion of phenylalanine at position 508 (ΔF508). CFTR contains five domains that each form cotranslational structures that interact with other domains as they are produced and folded. CFTR is comprised of two transmembrane spanning domains (TMDs), two nucleotide binding domains (NBDs) and a unique regulatory region (R). The first domain translated, TMD1, forms interdomain interactions with the other domains in CFTR. In TMD1, long intracellular loops extend into the cytoplasm and interact with both NBDs via coupling helices and with TMD2 via transmembrane spans (TMs). We examined mutations in TMD1 to determine the impact on individual domain and multidomain constructs. We found that mutations in a TM span or in the cytosolic ICLs interfere with specific steps in the hierarchical folding of CFTR. TM1 CF-causing mutants, G85E and G91R, directly affect TMD1, whereas most ICL1 and ICL2 mutant effects become apparent in the presence of TMD2. A single mutant in ICL2 worsened CFTR trafficking in the presence of NBD2, supporting its role in the ICL2-NBD2 interface. Mutation of hydrophobic residues in ICL coupling helices tended to increased levels of pre-TMD2 biogenic intermediates but caused ER accumulation in the presence of TMD2. This suggests a tradeoff between transient stability during translation and final structure. NBD2 increased the efficiency of mutant trafficking from the ER, consistent with stabilization of the full-length constructs. While the G85E and G91R mutants in TM1 have immediately detectable effects, most of the studied mutant effects and the ΔF508 mutant are apparent after production of TMD2, supporting this intermediate as a major point of recognition by protein quality control.

2004 ◽  
Vol 15 (9) ◽  
pp. 4125-4135 ◽  
Author(s):  
Andreas Gnann ◽  
John R. Riordan ◽  
Dieter H. Wolf

Cystic fibrosis is the most widespread hereditary disease among the white population caused by different mutations of the apical membrane ATP-binding cassette transporter cystic fibrosis transmembrane conductance regulator (CFTR). Its most common mutation, ΔF508, leads to nearly complete degradation via endoplasmic reticulum-associated degradation (ERAD). Elucidation of the quality control and degradation mechanisms might give rise to new therapeutic approaches to cure this disease. In the yeast Saccharomyces cerevisiae, a variety of components of the protein quality control and degradation system have been identified. Nearly all of these components share homology with mammalian counterparts. We therefore used yeast mutants defective in the ERAD system to identify new components that are involved in human CFTR quality control and degradation. We show the role of the lectin Htm1p in the degradation process of CFTR. Complementation of the HTM1 deficiency in yeast cells by the mammalian orthologue EDEM underlines the necessity of this lectin for CFTR degradation and highlights the similarity of quality control and ERAD in yeast and mammals. Furthermore, degradation of CFTR requires the ubiquitin protein ligases Der3p/Hrd1p and Doa10p as well as the cytosolic trimeric Cdc48p-Ufd1p-Npl4p complex. These proteins also were found to be necessary for ERAD of a mutated yeast “relative” of CFTR, Pdr5*p.


1999 ◽  
Vol 79 (1) ◽  
pp. S167-S173 ◽  
Author(s):  
RON R. KOPITO

Kopito, Ron R. Biosynthesis and Degradation of CFTR. Physiol. Rev. 79, Suppl.: S167–S173, 1999. — Many of the mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene that cause cystic fibrosis interfere with the folding and biosynthetic processing of nascent CFTR molecules in the endoplasmic reticulum. Mutations in the cytoplasmic nucleotide binding domains, including the common allele ΔF508, decrease the efficiency of CFTR folding, reduce the probability of its dissociation from molecular chaperones, and largely prevent its maturation through the secretory pathway to the plasma membrane. These mutant CFTR molecules are rapidly degraded by cytoplasmic proteasomes by a process that requires covalent modification by multiubiquitination. The effects of temperature and chemical chaperones on the intracellular processing of mutant CFTR molecules suggest that strategies aimed at increasing the folding yield of this protein in vivo may eventually lead to the development of novel therapies for cystic fibrosis.


2004 ◽  
Vol 15 (9) ◽  
pp. 4003-4010 ◽  
Author(s):  
Simon Alberti ◽  
Karsten Böhse ◽  
Verena Arndt ◽  
Anton Schmitz ◽  
Jörg Höhfeld

The CHIP ubiquitin ligase turns molecular chaperones into protein degradation factors. CHIP associates with the chaperones Hsc70 and Hsp90 during the regulation of signaling pathways and during protein quality control, and directs chaperone-bound clients to the proteasome for degradation. Obviously, this destructive activity should be carefully controlled. Here, we identify the cochaperone HspBP1 as an inhibitor of CHIP. HspBP1 attenuates the ubiquitin ligase activity of CHIP when complexed with Hsc70. As a consequence, HspBP1 interferes with the CHIP-induced degradation of immature forms of the cystic fibrosis transmembrane conductance regulator (CFTR) and stimulates CFTR maturation. Our data reveal a novel regulatory mechanism that determines folding and degradation activities of molecular chaperones.


2011 ◽  
Vol 22 (3) ◽  
pp. 301-314 ◽  
Author(s):  
Diane E. Grove ◽  
Chun-Yang Fan ◽  
Hong Yu Ren ◽  
Douglas M. Cyr

Relative contributions of folding kinetics versus protein quality control (QC) activity in the partitioning of non-native proteins between life and death are not clear. Cystic fibrosis transmembrane conductance regulator (CFTR) biogenesis serves as an excellent model to study this question because folding of nascent CFTR is inefficient and deletion of F508 causes accumulation of CFTRΔF508 in a kinetically trapped, but foldable state. Herein, a novel endoplasmic reticulum (ER)-associated Hsp40, DNAJB12 (JB12) is demonstrated to play a role in control of CFTR folding efficiency. JB12 cooperates with cytosolic Hsc70 and the ubiquitin ligase RMA1 to target CFTR and CFTRΔF508 for degradation. Modest elevation of JB12 decreased nascent CFTR and CFTRΔF508 accumulation while increasing association of Hsc70 with ER forms of CFTR and the RMA1 E3 complex. Depletion of JB12 increased CFTR folding efficiency up to threefold and permitted a pool of CFTRΔF508 to fold and escape the ER. Introduction of the V510D misfolding suppressor mutation into CFTRΔF508 modestly increased folding efficiency, whereas combined inactivation of JB12 and suppression of intrinsic folding defects permitted CFTRΔF508 to fold at 50% of wild-type efficiency. Therapeutic correction of CFTRΔF508 misfolding in cystic fibrosis patients may require repair of defective folding kinetics and suppression of ER QC factors, such as JB12.


2003 ◽  
Vol 374 (3) ◽  
pp. 793-797 ◽  
Author(s):  
Mohabir RAMJEESINGH ◽  
Jackie F. KIDD ◽  
Ling Jun HUAN ◽  
Yanchun WANG ◽  
Christine E. BEAR

CFTR (cystic fibrosis transmembrane conductance regulator) mediates chloride conduction across the apical membrane of epithelia, and mutations in CFTR lead to defective epithelial fluid transport. Recently, there has been considerable interest in determining the quaternary structure of CFTR at the cell surface, as such information is a key to understand the molecular basis for pathogenesis in patients harbouring disease-causing mutations. In our previous work [Ramjeesingh, Li, Kogan, Wang, Huan and Bear (2001) Biochemistry 40, 10700–10706], we showed that monomeric CFTR is the minimal functional form of the protein, yet when expressed in Sf 9 cells using the baculovirus system, it also exists as dimers. The purpose of the present study was to determine if dimeric CFTR exists at the surface of mammalian cells, and particularly in epithelial cells. CFTR solubilized from membranes prepared from Chinese-hamster ovary cells stably expressing CFTR and from T84 epithelial cells migrates as predicted for monomeric, dimeric and larger complexes when subjected to sizing by gel filtration and analysis by non-dissociative electrophoresis. Purification of plasma membranes led to the enrichment of CFTR dimers and this structure exists as the complex glycosylated form of the protein, supporting the concept that dimeric CFTR is physiologically relevant. Consistent with its localization in plasma membranes, dimeric CFTR was labelled by surface biotinylation. Furthermore, dimeric CFTR was captured at the apical surface of intact epithelial cells by application of a membrane-impermeable chemical cross-linker. Therefore it follows from the present study that CFTR dimers exist at the surface of epithelial cells. Further studies are necessary to understand the impact of dimerization on the cell biology of wild-type and mutant CFTR proteins.


2008 ◽  
Vol 19 (11) ◽  
pp. 4570-4579 ◽  
Author(s):  
Meredith F. N. Rosser ◽  
Diane E. Grove ◽  
Liling Chen ◽  
Douglas M. Cyr

Cystic fibrosis transmembrane conductance regulator (CFTR) is a polytopic membrane protein that functions as a Cl− channel and consists of two membrane spanning domains (MSDs), two cytosolic nucleotide binding domains (NBDs), and a cytosolic regulatory domain. Cytosolic 70-kDa heat shock protein (Hsp70), and endoplasmic reticulum-localized calnexin are chaperones that facilitate CFTR biogenesis. Hsp70 functions in both the cotranslational folding and posttranslational degradation of CFTR. Yet, the mechanism for calnexin action in folding and quality control of CFTR is not clear. Investigation of this question revealed that calnexin is not essential for CFTR or CFTRΔF508 degradation. We identified a dependence on calnexin for proper assembly of CFTR's membrane spanning domains. Interestingly, efficient folding of NBD2 was also found to be dependent upon calnexin binding to CFTR. Furthermore, we identified folding defects caused by deletion of F508 that occurred before and after the calnexin-dependent association of MSD1 and MSD2. Early folding defects are evident upon translation of the NBD1 and R-domain and are sensed by the RMA-1 ubiquitin ligase complex.


2021 ◽  
Author(s):  
Eli Fritz McDonald ◽  
Hope Woods ◽  
Shannon Smith ◽  
Minsoo Kim ◽  
Clara T. Schoeder ◽  
...  

Cystic Fibrosis (CF) is a common genetic disease caused by mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR), an epithelial anion channel expressed in several vital organs. Absence of functional CFTR results in imbalanced osmotic equilibrium and subsequent mucus build up in the lungs - which increases the risk of infection and eventually causes death. CFTR is an ATP binding cassette (ABC) transporter composed of two transmembrane domains (TMDs), two nucleotide binding domains (NBDs), and an unstructured regulatory domain. The most prevalent patient mutation is the deletion of F508 (ΔF508), making ΔF508 CFTR the primary target for current FDA approved CF therapies. However, no experimental multi-domain ΔF508 CFTR structure has been determined and few studies have modeled ΔF508 using multi-domain WT CFTR structures. Here, we used cryo-EM density data and Rosetta comparative modeling (RosettaCM) to compare a ΔF508 model with published experimental data on CFTR NBD1 thermodynamics. We then apply this modeling method to generate multi-domain WT and ΔF508 CFTR structural models. These models demonstrate the destabilizing effects of ΔF508 on NBD1 and the NBD1/TMD interface in both the closed and open conformation of CFTR. Furthermore, we modeled ΔF508/R1070W and ΔF508 bound to a the CFTR corrector VX-809. Our models reveal the stabilizing effects of R1070W and VX-809 on multi-domain models of ΔF508 CFTR and pave the way for rational design of additional drugs that target ΔF508 CFTR for treatment of CF.


Sign in / Sign up

Export Citation Format

Share Document