scholarly journals Positive selection in multiple salivary gland proteins of Anophelinae reveals potential targets for vector control

2021 ◽  
Author(s):  
Lucas Freitas ◽  
Mariana F. Nery

AbstractAnopheles is a genus belonging to the Culicidae family, which has great medical importance due to its role as a vector of Plasmodium, the parasite responsible for malaria. From Anopheles’ functional genomics, great focus has been given to the salivary gland proteins (SGPs) group. This class of proteins is essential to blood-feeding behavior as they have attributes such as vasodilators and anti-clotting properties. Recently, a comprehensive review on Anopheles SGPs was performed, however the authors did not deeply explore the adaptive molecular evolution of these genes. In this context, this work aimed to perform a more detailed analysis of the adaptive molecular evolution of SGPs in Anopheles, carrying out positive selection and gene families evolution analysis on 824 SGPs. Our results show that most SGPs have positively selected sites that can be used as targets in the development of new strategies for vector control. Notably, we were not able to find any evidence of an accelerated shift in the copy-number variation of SGPs compared with other proteins, as suggested in previous works.Significance StatementSalivary gland proteins (SGPs) are essential to blood-feeding behavior in Anopheles and they are the most studied class of proteins in blood-feeding insects. However a proper molecular evolution analysis on SGPs in Anopheles is missing. In our analyses we observed that most SGPs have positively selected sites and we were not able to find any evidence of an accelerated shift in the copy-number of SGPs compared with other proteins, as stated in the literature. Our results can open new venues in the development of new strategies for vector control.

2015 ◽  
Vol 112 (22) ◽  
pp. 7055-7060 ◽  
Author(s):  
Suzanne E. McGaugh ◽  
Anne M. Bronikowski ◽  
Chih-Horng Kuo ◽  
Dawn M. Reding ◽  
Elizabeth A. Addis ◽  
...  

The insulin/insulin-like signaling and target of rapamycin (IIS/TOR) network regulates lifespan and reproduction, as well as metabolic diseases, cancer, and aging. Despite its vital role in health, comparative analyses of IIS/TOR have been limited to invertebrates and mammals. We conducted an extensive evolutionary analysis of the IIS/TOR network across 66 amniotes with 18 newly generated transcriptomes from nonavian reptiles and additional available genomes/transcriptomes. We uncovered rapid and extensive molecular evolution between reptiles (including birds) and mammals: (i) the IIS/TOR network, including the critical nodes insulin receptor substrate (IRS) and phosphatidylinositol 3-kinase (PI3K), exhibit divergent evolutionary rates between reptiles and mammals; (ii) compared with a proxy for the rest of the genome, genes of the IIS/TOR extracellular network exhibit exceptionally fast evolutionary rates; and (iii) signatures of positive selection and coevolution of the extracellular network suggest reptile- and mammal-specific interactions between members of the network. In reptiles, positively selected sites cluster on the binding surfaces of insulin-like growth factor 1 (IGF1), IGF1 receptor (IGF1R), and insulin receptor (INSR); whereas in mammals, positively selected sites clustered on the IGF2 binding surface, suggesting that these hormone-receptor binding affinities are targets of positive selection. Further, contrary to reports that IGF2R binds IGF2 only in marsupial and placental mammals, we found positively selected sites clustered on the hormone binding surface of reptile IGF2R that suggest that IGF2R binds to IGF hormones in diverse taxa and may have evolved in reptiles. These data suggest that key IIS/TOR paralogs have sub- or neofunctionalized between mammals and reptiles and that this network may underlie fundamental life history and physiological differences between these amniote sister clades.


2020 ◽  
Author(s):  
Chris M. Cohen ◽  
T. Jeffrey Cole ◽  
Michael S. Brewer

AbstractRobber flies are an understudied family of venomous, predatory Diptera. With the recent characterization of venom from three asilid species, it is possible for the first time to study the molecular evolution of venom genes in this unique lineage. To accomplish this, a novel whole-body transcriptome of Eudioctria media was combined with 10 other publicly available asiloid thoracic or salivary gland transcriptomes to identify putative venom gene families and assess evidence of pervasive positive selection. A total of 348 gene families of sufficient size were analyzed, and 33 of these were predicted to contain venom genes. We recovered 151 families containing homologs to previously described venoms, and 40 of these were uniquely gained in Asilidae. Our gene family clustering suggests that many asilidin venom gene families are not natural groupings as originally delimited. Additionally, robber-fly venoms have relatively few sites under positive selection, consistent with the hypothesis that the venom of older lineages are dominated by negative selection acting to maintain toxic function.


Toxins ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 738
Author(s):  
Chris M. Cohen ◽  
T. Jeffrey Cole ◽  
Michael S. Brewer

Robber flies are an understudied family of venomous, predatory Diptera. With the recent characterization of venom from three asilid species, it is possible, for the first time, to study the molecular evolution of venom genes in this unique lineage. To accomplish this, a novel whole-body transcriptome of Eudioctria media was combined with 10 other publicly available asiloid thoracic or salivary gland transcriptomes to identify putative venom gene families and assess evidence of pervasive positive selection. A total of 348 gene families of sufficient size were analyzed, and 33 of these were predicted to contain venom genes. We recovered 151 families containing homologs to previously described venom proteins, and 40 of these were uniquely gained in Asilidae. Our gene family clustering suggests that many asilidin venom gene families are not natural groupings, as delimited by previous authors, but instead form multiple discrete gene families. Additionally, robber fly venoms have relatively few sites under positive selection, consistent with the hypothesis that the venoms of older lineages are dominated by negative selection acting to maintain toxic function.


Genetics ◽  
2001 ◽  
Vol 157 (2) ◽  
pp. 667-677
Author(s):  
Hitoshi Araki ◽  
Nobuyuki Inomata ◽  
Tsuneyuki Yamazaki

Abstract In this study, we randomly sampled Drosophila melanogaster from Japanese and Kenyan natural populations. We sequenced duplicated (proximal and distal) Amy gene regions to test whether the patterns of polymorphism were consistent with neutral molecular evolution. Fst between the two geographically distant populations, estimated from Amy gene regions, was 0.084, smaller than reported values for other loci, comparing African and Asian populations. Furthermore, little genetic differentiation was found at a microsatellite locus (DROYANETSB) in these samples (Gst′=−0.018). The results of several tests (Tajima's, Fu and Li's, and Wall's tests) were not significantly different from neutrality. However, a significantly higher level of fixed replacement substitutions was detected by a modified McDonald and Kreitman test for both populations. This indicates that positive selection occurred during or immediately after the speciation of D. melanogaster. Sliding-window analysis showed that the proximal region 1, a part of the proximal 5′ flanking region, was conserved between D. melanogaster and its sibling species, D. simulans. An HKA test was significant when the proximal region 1 was compared with the 5′ flanking region of Alcohol dehydrogenase (Adh), indicating a severe selective constraint on the Amy proximal region 1. These results suggest that natural selection has played an important role in the molecular evolution of Amy gene regions in D. melanogaster.


1997 ◽  
Vol 44 (5) ◽  
pp. 477-491 ◽  
Author(s):  
Wei Wu ◽  
Morris Goodman ◽  
Margaret I. Lomax ◽  
Lawrence I. Grossman

2009 ◽  
Vol 81 (6) ◽  
pp. 1023-1029 ◽  
Author(s):  
Thierry Lefèvre ◽  
Frédéric Thomas ◽  
François Renaud ◽  
Eric Elguero ◽  
Didier Fontenille ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document