scholarly journals Fast A-type currents shape a rapidly adapting form of delayed short latency firing of excitatory superficial dorsal horn neurons that express the NPY Y1 receptor

2021 ◽  
Author(s):  
Ghanshyam P. Sinha ◽  
Pranav Prasoon ◽  
Bret N. Smith ◽  
Bradley K. Taylor

ABSTRACTNeuroanatomical and behavioral evidence indicates that neuropeptide Y Y1 receptor-expressing interneurons (Y1-INs) in the superficial dorsal horn (SDH) are predominantly excitatory and contribute to chronic pain. Using an adult ex vivo spinal cord slice preparation from Y1eGFP reporter mice, we characterized firing patterns in response to steady state depolarizing current injection of GFP-positive cells in lamina II, the great majority of which expressed Y1 mRNA (88%). Randomly sampled and Y1eGFP neurons exhibited five firing patterns: tonic (TF), initial burst (IBF), phasic (PF), delayed short-latency <180 ms (DSLF), and delayed long-latency >180 ms (DLLF). When studied at resting membrane potential, most RS neurons exhibited delayed firing, while most Y1eGFP neurons exhibited phasic firing and not delayed firing. A preconditioning membrane hyperpolarization produced only subtle changes in the firing patterns of randomly sampled neurons, but dramatically shifted Y1eGFP neurons to DSLF (46%) and DLLF (24%). In contrast to randomly sampled DSLF neurons which rarely exhibited spike frequency adaptation, Y1eGFP DSLF neurons were almost always rapidly adapting, a characteristic of nociceptive-responsive SDH neurons. Rebound spiking was more prevalent in Y1eGFP neurons (6% RS vs 32% Y1eGFP), indicating enrichment of T-type calcium currents. Y1eGFP DSLF neurons exhibited fast A-type potassium currents that are known to delay or limit action potential firing, and these were of smaller current density as compared to randomly sampled DSLF neurons. Our results inspire future studies to determine whether tissue or nerve injury downregulates channels that contribute to A-currents, thus potentially unmasking T-type calcium channel activity and membrane hyperexcitability in Y1-INs, leading to persistent pain.KEYPOINTSNeuropeptide Y Y1 receptor-expressing neurons in the dorsal horn of the spinal cord contribute to chronic pain.For the first time, we characterized the firing patterns of Y1-expressing neurons in Y1eGFP reporter mice.Under hyperpolarized conditions, most Y1eGFP neurons exhibited fast A-type potassium currents and delayed, short-latency firing (DSLF).Y1eGFP DSLF neurons were almost always rapidly adapting and often exhibited rebound spiking, characteristics of spinal pain neurons under the control of T-type calcium channels.These results inspire future studies to determine whether tissue or nerve injury downregulates the channels that underlie A-currents, thus unmasking membrane hyperexcitability in Y1- expressing dorsal horn neurons, leading to persistent pain

2008 ◽  
Vol 99 (6) ◽  
pp. 3144-3150 ◽  
Author(s):  
Rachel A. Ingram ◽  
Maria Fitzgerald ◽  
Mark L. Baccei

The lower thresholds and increased excitability of dorsal horn neurons in the neonatal rat suggest that inhibitory processing is less efficient in the immature spinal cord. This is unlikely to be explained by an absence of functional GABAergic inhibition because antagonism of γ-aminobutyric acid (GABA) type A receptors augments neuronal firing in vivo from the first days of life. However, it is possible that more subtle deficits in GABAergic signaling exist in the neonate, such as decreased reliability of transmission or greater depression during repetitive stimulation, both of which could influence the relative excitability of the immature spinal cord. To address this issue we examined monosynaptic GABAergic inputs onto superficial dorsal horn neurons using whole cell patch-clamp recordings made in spinal cord slices at a range of postnatal ages (P3, P10, and P21). The amplitudes of evoked inhibitory postsynaptic currents (IPSCs) were significantly lower and showed greater variability in younger animals, suggesting a lower fidelity of GABAergic signaling at early postnatal ages. Paired-pulse ratios were similar throughout the postnatal period, whereas trains of stimuli (1, 5, 10, and 20 Hz) revealed frequency-dependent short-term depression (STD) of IPSCs at all ages. Although the magnitude of STD did not differ between ages, the recovery from depression was significantly slower at immature GABAergic synapses. These properties may affect the integration of synaptic inputs within developing superficial dorsal horn neurons and thus contribute to their larger receptive fields and enhanced afterdischarge.


2010 ◽  
Vol 104 (4) ◽  
pp. 1978-1996 ◽  
Author(s):  
Yann Le Franc ◽  
Gwendal Le Masson

Deep dorsal horn relay neurons (dDHNs) of the spinal cord are known to exhibit multiple firing patterns under the control of local metabotropic neuromodulation: tonic firing, plateau potential, and spontaneous oscillations. This work investigates the role of interactions between voltage-gated channels and the occurrence of different firing patterns and then correlates these two phenomena with their functional role in sensory information processing. We designed a conductance-based model using the NEURON software package, which successfully reproduced the classical features of plateau in dDHNs, including a wind-up of the neuronal response after repetitive stimulation. This modeling approach allowed us to systematically test the impact of conductance interactions on the firing patterns. We found that the expression of multiple firing patterns can be reproduced by changes in the balance between two currents (L-type calcium and potassium inward rectifier conductances). By investigating a possible generalization of the firing state switch, we found that the switch can also occur by varying the balance of any hyperpolarizing and depolarizing conductances. This result extends the control of the firing switch to neuromodulators or to network effects such as synaptic inhibition. We observed that the switch between the different firing patterns occurs as a continuous function in the model, revealing a particular intermediate state called the accelerating mode. To characterize the functional effect of a firing switch on information transfer, we used correlation analysis between a model of peripheral nociceptive afference and the dDHN model. The simulation results indicate that the accelerating mode was the optimal firing state for information transfer.


1998 ◽  
Vol 80 (6) ◽  
pp. 3356-3360 ◽  
Author(s):  
Ping Li ◽  
Amelita A. Calejesan ◽  
Min Zhuo

Li, Ping, Amelita A. Calean, and Min Zhuo. ATP P2× receptors and sensory synaptic transmission between primary afferent fibers and spinal dorsal horn neurons in rats. J. Neurophysiol. 80: 3356–3360, 1998. Glutamate is a major fast transmitter between primary afferent fibers and dorsal horn neurons in the spinal cord. Recent evidence indicates that ATP acts as another fast transmitter at the rat cervical spinal cord and is proposed to serve as a transmitter for nociception and pain. Sensory synaptic transmission between dorsal root afferent fibers and neurons in the superficial dorsal horn of the lumbar spinal cord were examined by whole cell patch-clamp recording techniques. Experiments were designed to test if ATP could serve as a transmitter at the lumbar spinal cord. Monosynaptic excitatory postsynaptic currents (EPSCs) were completely abolished after the blockade of both glutamatergic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/kainate and N-methyl-d-aspartate receptors. No residual current was detected, indicating that glutamate but not ATP is a fast transmitter at the dorsal horn of the lumbar spinal cord. Pyridoxal-phosphate-6-azophenyl-2′,4′-disulfonic acid (PPADS), a selective P2× receptor antagonist, produced an inhibitory modulatory effect on fast EPSCs and altered responses to paired-pulse stimulation, suggesting the involvement of a presynaptic mechanism. Intrathecal administration of PPADS did not produce any antinociceptive effect in two different types of behavioral nociceptive tests. The present results suggest that ATP P2×2 receptors modulate excitatory synaptic transmission in the superficial dorsal horn of the lumbar spinal cord by a presynaptic mechanism, and such a mechanism does not play an important role in behavioral responses to noxious heating. The involvement of other P2× subtype receptors, which is are less sensitive to PPADS, in acute nociceptive modulation and persistent pain remains to be investigated.


Sign in / Sign up

Export Citation Format

Share Document