scholarly journals Neural correlates of subsequent memory-related gaze reinstatement

2021 ◽  
Author(s):  
Jordana S. Wynn ◽  
Zhong-Xu Liu ◽  
Jennifer D. Ryan

AbstractMounting evidence linking gaze reinstatement- the recapitulation of encoding-related gaze patterns during retrieval- to behavioral measures of memory suggests that eye movements play an important role in mnemonic processing. Yet, the nature of the gaze scanpath, including its informational content and neural correlates, has remained in question. In the present study, we examined eye movement and neural data from a recognition memory task to further elucidate the behavioral and neural bases of functional gaze reinstatement. Consistent with previous work, gaze reinstatement during retrieval of freely-viewed scene images was greater than chance and predictive of recognition memory performance. Gaze reinstatement was also associated with viewing of informationally salient image regions at encoding, suggesting that scanpaths may encode and contain high-level scene content. At the brain level, gaze reinstatement was predicted by encoding-related activity in the occipital pole and basal ganglia, neural regions associated with visual processing and oculomotor control. Finally, cross-voxel brain pattern similarity analysis revealed overlapping subsequent memory and subsequent gaze reinstatement modulation effects in the parahippocampal place area and hippocampus, in addition to the occipital pole and basal ganglia. Together, these findings suggest that encoding-related activity in brain regions associated with scene processing, oculomotor control, and memory supports the formation, and subsequent recapitulation, of functional scanpaths. More broadly, these findings lend support to Scanpath Theory’s assertion that eye movements both encode, and are themselves embedded in, mnemonic representations.

2021 ◽  
pp. 1-15
Author(s):  
Jordana S. Wynn ◽  
Zhong-Xu Liu ◽  
Jennifer D. Ryan

Abstract Mounting evidence linking gaze reinstatement—the recapitulation of encoding-related gaze patterns during retrieval—to behavioral measures of memory suggests that eye movements play an important role in mnemonic processing. Yet, the nature of the gaze scanpath, including its informational content and neural correlates, has remained in question. In this study, we examined eye movement and neural data from a recognition memory task to further elucidate the behavioral and neural bases of functional gaze reinstatement. Consistent with previous work, gaze reinstatement during retrieval of freely viewed scene images was greater than chance and predictive of recognition memory performance. Gaze reinstatement was also associated with viewing of informationally salient image regions at encoding, suggesting that scanpaths may encode and contain high-level scene content. At the brain level, gaze reinstatement was predicted by encoding-related activity in the occipital pole and BG, neural regions associated with visual processing and oculomotor control. Finally, cross-voxel brain pattern similarity analysis revealed overlapping subsequent memory and subsequent gaze reinstatement modulation effects in the parahippocampal place area and hippocampus, in addition to the occipital pole and BG. Together, these findings suggest that encoding-related activity in brain regions associated with scene processing, oculomotor control, and memory supports the formation, and subsequent recapitulation, of functional scanpaths. More broadly, these findings lend support to scanpath theory's assertion that eye movements both encode, and are themselves embedded in, mnemonic representations.


2014 ◽  
Vol 53 (5) ◽  
pp. 293 ◽  
Author(s):  
Na-Hyun Lee ◽  
Seung-Jun Kim ◽  
Ji-Woong Kim ◽  
Woo-Young Im ◽  
Hyukchan Kwon ◽  
...  

2021 ◽  
Author(s):  
Natalia Ladyka-Wojcik ◽  
Zhong-Xu Liu ◽  
Jennifer D. Ryan

Scene construction is a key component of memory recall, navigation, and future imagining, and relies on the medial temporal lobes (MTL). A parallel body of work suggests that eye movements may enable the imagination and construction of scenes, even in the absence of external visual input. There are vast structural and functional connections between regions of the MTL and those of the oculomotor system. However, the directionality of connections between the MTL and oculomotor control regions, and how it relates to scene construction, has not been studied directly in human neuroimaging. In the current study, we used dynamic causal modeling (DCM) to investigate this relationship at a mechanistic level using a scene construction task in which participants' eye movements were either restricted (fixed-viewing) or unrestricted (free-viewing). By omitting external visual input, and by contrasting free- versus fixed- viewing, the directionality of neural connectivity during scene construction could be determined. As opposed to when eye movements were restricted, allowing free viewing during construction of scenes strengthened top-down connections from the MTL to the frontal eye fields, and to lower-level cortical visual processing regions, suppressed bottom-up connections along the visual stream, and enhanced vividness of the constructed scenes. Taken together, these findings provide novel, non-invasive evidence for the causal architecture between the MTL memory system and oculomotor system associated with constructing vivid mental representations of scenes.


Author(s):  
Francesco Panico ◽  
Stefania De Marco ◽  
Laura Sagliano ◽  
Francesca D’Olimpio ◽  
Dario Grossi ◽  
...  

AbstractThe Corsi Block-Tapping test (CBT) is a measure of spatial working memory (WM) in clinical practice, requiring an examinee to reproduce sequences of cubes tapped by an examiner. CBT implies complementary behaviors in the examiners and the examinees, as they have to attend a precise turn taking. Previous studies demonstrated that the Prefrontal Cortex (PFC) is activated during CBT, but scarce evidence is available on the neural correlates of CBT in the real setting. We assessed PFC activity in dyads of examiner–examinee participants while completing the real version of CBT, during conditions of increasing and exceeding workload. This procedure allowed to investigate whether brain activity in the dyads is coordinated. Results in the examinees showed that PFC activity was higher when the workload approached or reached participants’ spatial WM span, and lower during workload conditions that were largely below or above their span. Interestingly, findings in the examiners paralleled the ones in the examinees, as examiners’ brain activity increased and decreased in a similar way as the examinees’ one. In the examiners, higher left-hemisphere activity was observed suggesting the likely activation of non-spatial WM processes. Data support a bell-shaped relationship between cognitive load and brain activity, and provide original insights on the cognitive processes activated in the examiner during CBT.


2021 ◽  
Vol 11 (5) ◽  
pp. 535
Author(s):  
Davide Sattin ◽  
Francesca Giulia Magnani ◽  
Laura Bartesaghi ◽  
Milena Caputo ◽  
Andrea Veronica Fittipaldo ◽  
...  

The amount of knowledge on human consciousness has created a multitude of viewpoints and it is difficult to compare and synthesize all the recent scientific perspectives. Indeed, there are many definitions of consciousness and multiple approaches to study the neural correlates of consciousness (NCC). Therefore, the main aim of this article is to collect data on the various theories of consciousness published between 2007–2017 and to synthesize them to provide a general overview of this topic. To describe each theory, we developed a thematic grid called the dimensional model, which qualitatively and quantitatively analyzes how each article, related to one specific theory, debates/analyzes a specific issue. Among the 1130 articles assessed, 85 full texts were included in the prefinal step. Finally, this scoping review analyzed 68 articles that described 29 theories of consciousness. We found heterogeneous perspectives in the theories analyzed. Those with the highest grade of variability are as follows: subjectivity, NCC, and the consciousness/cognitive function. Among sub-cortical structures, thalamus, basal ganglia, and the hippocampus were the most indicated, whereas the cingulate, prefrontal, and temporal areas were the most reported for cortical ones also including the thalamo-cortical system. Moreover, we found several definitions of consciousness and 21 new sub-classifications.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Mirko Lehmann ◽  
Claudia Neumann ◽  
Sven Wasserthal ◽  
Johannes Schultz ◽  
Achilles Delis ◽  
...  

Abstract Only little research has been conducted on the pharmacological underpinnings of metacognition. Here, we tested the modulatory effects of a single intravenous dose (100 ng/ml) of the N-methyl-D-aspartate-glutamate-receptor antagonist ketamine, a compound known to induce altered states of consciousness, on metacognition and its neural correlates. Fifty-three young, healthy adults completed two study phases of an episodic memory task involving both encoding and retrieval in a double-blind, placebo-controlled fMRI study. Trial-by-trial confidence ratings were collected during retrieval. Effects on the subjective state of consciousness were assessed using the 5D-ASC questionnaire. Confirming that the drug elicited a psychedelic state, there were effects of ketamine on all 5D-ASC scales. Acute ketamine administration during retrieval had deleterious effects on metacognitive sensitivity (meta-d′) and led to larger metacognitive bias, with retrieval performance (d′) and reaction times remaining unaffected. However, there was no ketamine effect on metacognitive efficiency (meta-d′/d′). Measures of the BOLD signal revealed that ketamine compared to placebo elicited higher activation of posterior cortical brain areas, including superior and inferior parietal lobe, calcarine gyrus, and lingual gyrus, albeit not specific to metacognitive confidence ratings. Ketamine administered during encoding did not significantly affect performance or brain activation. Overall, our findings suggest that ketamine impacts metacognition, leading to significantly larger metacognitive bias and deterioration of metacognitive sensitivity as well as unspecific activation increases in posterior hot zone areas of the neural correlates of consciousness.


Sign in / Sign up

Export Citation Format

Share Document