scholarly journals Depressive rumination is correlated with brain responses during self-related processing

Author(s):  
Tzu-Yu Hsu ◽  
Tzu-Ling Liu ◽  
Paul Z. Cheng ◽  
Hsin-Chien Lee ◽  
Timothy J. Lane ◽  
...  

AbstractBackgroundRumination, a tendency to focus on negative self-related thoughts, is a central symptom of depression. Studying the self-related aspect of such symptoms is challenging due to the need to distinguish self effects per se from the emotional content of task stimuli. This study employs an emotionally neutral self-related paradigm to investigate possible altered self processing in depression and its link to rumination.MethodsPeople with unipolar depression (MDD; n = 25) and controls (n = 25) underwent task-based EEG recording. Late event-related potentials were studied along with low frequency oscillatory power. EEG metrics were compared between groups and correlated with depressive symptoms and reported rumination.ResultsThe MDD group displayed a difference in late potentials across fronto-central electrodes between self-related and non-self-related conditions. No such difference was seen in controls. The magnitude of this difference was positively related with depressive symptoms and reported rumination. MDD also had elevated theta oscillation power at central electrodes in self-related conditions, which was not seen in controls.ConclusionsRumination appears linked to altered self-related processing in depression, independently of stimuli-related emotional confounds. This connection between self-related processing and depression may point to self-disorder being a core component of the condition.

2021 ◽  
Author(s):  
Mohamed Ameen ◽  
Dominik Philipp Johannes Heib ◽  
Christine Blume ◽  
Manuel Schabus

The brain continues to respond selectively to environmental stimuli even during sleep. However, the functional role of such responses, and whether they reflect information processing or rather sensory inhibition is not fully understood. Here, we presented 17 human sleepers (14 females) with their own name and two unfamiliar first names, spoken by either a familiar voice (FV) or an unfamiliar voice (UFV), while recording polysomnography during a full night of sleep. We detected K-complexes, sleep spindles, and micro-arousals, and then assessed event-related potentials, oscillatory power as well as inter-trial phase synchronization in response to the different stimuli presented during non-rapid eye movement (NREM) sleep. We show that UFVs evoke more K-complexes and micro-arousals than FVs. When both stimuli evoke a K-complex, we observed larger evoked potentials, higher oscillatory power in the high beta (>16Hz) frequency range, and stronger time-locking in the delta band (1-4 Hz) in response to UFVs relative to FVs. Crucially, these differences in brain responses disappear when no K-complexes are evoked by the auditory stimuli. Our findings highlight discrepancies in brain responses to auditory stimuli based on their relevance to the sleeper and propose a key role for K-complexes in the modulation of sensory processing during sleep. We argue that such content-specific, dynamic reactivity to external sensory information enables the brain to enter a sentinel processing mode in which it engages in the many important processes that are ongoing during sleep while still maintaining the ability to process vital information in the surrounding.


2018 ◽  
Vol 4 (1) ◽  
Author(s):  
Jona Sassenhagen ◽  
Ryan Blything ◽  
Elena V. M. Lieven ◽  
Ben Ambridge

How are verb-argument structure preferences acquired? Children typically receive very little negative evidence, raising the question of how they come to understand the restrictions on grammatical constructions. Statistical learning theories propose stochastic patterns in the input contain sufficient clues. For example, if a verb is very common, but never observed in transitive constructions, this would indicate that transitive usage of that verb is illegal. Ambridge et al. (2008) have shown that in offline grammaticality judgements of intransitive verbs used in transitive constructions, low-frequency verbs elicit higher acceptability ratings than high-frequency verbs, as predicted if relative frequency is a cue during statistical learning. Here, we investigate if the same pattern also emerges in on-line processing of English sentences. EEG was recorded while healthy adults listened to sentences featuring transitive uses of semantically matched verb pairs of differing frequencies. We replicate the finding of higher acceptabilities of transitive uses of low- vs. high-frequency intransitive verbs. Event-Related Potentials indicate a similar result: early electrophysiological signals distinguish between misuse of high- vs low-frequency verbs. This indicates online processing shows a similar sensitivity to frequency as off-line judgements, consistent with a parser that reflects an original acquisition of grammatical constructions via statistical cues. However, the nature of the observed neural responses was not of the expected, or an easily interpretable, form, motivating further work into neural correlates of online processing of syntactic constructions.


2015 ◽  
Vol 27 (5) ◽  
pp. 1017-1028 ◽  
Author(s):  
Paul Metzner ◽  
Titus von der Malsburg ◽  
Shravan Vasishth ◽  
Frank Rösler

Recent research has shown that brain potentials time-locked to fixations in natural reading can be similar to brain potentials recorded during rapid serial visual presentation (RSVP). We attempted two replications of Hagoort, Hald, Bastiaansen, and Petersson [Hagoort, P., Hald, L., Bastiaansen, M., & Petersson, K. M. Integration of word meaning and world knowledge in language comprehension. Science, 304, 438–441, 2004] to determine whether this correspondence also holds for oscillatory brain responses. Hagoort et al. reported an N400 effect and synchronization in the theta and gamma range following world knowledge violations. Our first experiment (n = 32) used RSVP and replicated both the N400 effect in the ERPs and the power increase in the theta range in the time–frequency domain. In the second experiment (n = 49), participants read the same materials freely while their eye movements and their EEG were monitored. First fixation durations, gaze durations, and regression rates were increased, and the ERP showed an N400 effect. An analysis of time–frequency representations showed synchronization in the delta range (1–3 Hz) and desynchronization in the upper alpha range (11–13 Hz) but no theta or gamma effects. The results suggest that oscillatory EEG changes elicited by world knowledge violations are different in natural reading and RSVP. This may reflect differences in how representations are constructed and retrieved from memory in the two presentation modes.


2020 ◽  
pp. 1-09
Author(s):  
Jan Rouke Kuipers ◽  
William A. Phillips

Pupillometry has been found to be correlated with activity of cholinergic and noradrenergic neuromodulator systems. These systems regulate the level of cortical arousal and therefore perception, attention, and memory. Here, we tested how different types of pupil size variance (prestimulus baseline and prestimulus hippus power) may correlate with behavioral and electrophysiological brain responses (ERPs). We recorded pupil size and ERPs while participants were presented with a series of words and then asked whether they had been in the initial list when they were later presented intermixed with unpresented words. We found that a smaller prestimulus baseline pupil size during the study phase was associated with better memory performance. Study items also evoked a larger P3 response at presentation and a greater old/new memory ERP effect at test when prestimulus pupil size was small rather than large. Prestimulus hippus power was found to be a between-subjects factor affecting the robustness of memory encoding with less power being associated with a greater old/new memory ERP effect. These results provide evidence relating memory and ERPs to variables defined on pupil size that are thought to reflect varying states of parasympathetic and sympathetic arousal.


2004 ◽  
Vol 16 (1) ◽  
pp. 53-64 ◽  
Author(s):  
Mercedes Atienza ◽  
Jose L. Cantero ◽  
Robert Stickgold

Perceptual learning can develop over extended periods, with slow, at times sleep-dependent, improvement seen several days after training. As a result, performance can become more automatic, that is, less dependent on voluntary attention. This study investigates whether the brain correlates of this enhancement of automaticity are sleep-dependent. Event-related potentials produced in response to complex auditory stimuli were recorded while subjects' attention was focused elsewhere. We report here that following training on an auditory discrimination task, performance continued to improve, without significant further training, for 72 hr. At the same time, several event-related potential components became evident 48–72 hr after training. Posttraining sleep deprivation prevented neither the continued performance improvement nor the slow development of cortical dynamics related to an enhanced familiarity with the task. However, those brain responses associated with the automatic shift of attention to unexpected stimuli failed to develop. Thus, in this auditory learning paradigm, posttraining sleep appears to reduce the voluntary attentional effort required for successful perceptual discrimination by facilitating the intrusion of a potentially meaningful stimulus into one's focus of attention for further evaluation.


Author(s):  
Sarah J. Hart ◽  
Nathaniel Lucena ◽  
Katherine M. Cleary ◽  
Aysenil Belger ◽  
Franc C. L. Donkers

Author(s):  
Adil Deniz Duru ◽  
Ali Bayram ◽  
Tamer Demiralp ◽  
Ahmet Ademoglu

Event-related potentials (ERP) are transient brain responses to cognitive stimuli, and they consist of several stationary events whose temporal frequency content can be characterized in terms of oscillations or rhythms. Precise localization of electrical events in the brain, based on the ERP data recorded from the scalp, has been one of the main challenges of functional brain imaging. Several currentDensity estimation techniques for identifying the electrical sources generating the brain potentials are developed for the so-called neuroelectromagnetic inverse problem in the last three decades (Baillet, Mosher, & Leahy, 2001; Koles, 1998; Michela, Murraya, Lantza, Gonzaleza, Spinellib, & Grave de Peraltaa, 2004; Scherg & von Cramon, 1986).


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Sara Sardari ◽  
Ali Mohammad Pourrahimi ◽  
Hossein Talebi ◽  
Shahrzad Mazhari

Abstract Research has found auditory spatial processing deficits in patients with schizophrenia (SCZ), but no study has examined SCZ patients’ auditory spatial processing at both pre-attentional and attentional stages. To address this gap, we investigated schizophrenics’ brain responses to sounds originating from different locations (right, left, and bilateral sources). The event-related potentials (ERPs) of 25 chronic schizophrenic patients and 25 healthy subjects were compared. Mismatch negativity (MMN) in response to frequency and duration deviants was assessed. Two P3 components (P3a and P3b) were elicited via a frequency discrimination task, and MMN and P3 were recorded through separate monaural and dichotic stimulation paradigms. Our results corroborated the previously published finding that MMN, P3a, and P3b amplitudes are reduced in SCZ patients, but they showed no significant effect of stimulus location on either MMN or P3. These results indicated similarity between the SCZ patients and healthy individuals as regards patterns of ERP responses to stimuli that come from different directions. No evidence of auditory hemispatial bias in the SCZ patients was found, supporting the existence of non-lateralized spatial processing deficits in such patients and suggesting compensatory changes in the hemispheric laterality of patients’ brains.


Sign in / Sign up

Export Citation Format

Share Document