scholarly journals Transcriptome-based phylogeny and whole-genome duplication in Theaceae

2021 ◽  
Author(s):  
Qiong Zhang ◽  
Lei Zhao ◽  
Jian-Li Zhao ◽  
Ryan A. Folk ◽  
Nelson Zamora ◽  
...  

Theaceae, with three tribes and nine genera, is a family of great economic and ecological importance. Recent phylogenetic analyses based on plastid genome resolved the relationship among three tribes and the intergeneric relationships within Gordonieae and Stewartieae. However, generic level relationships within the largest tribe Theeae were not fully resolved and potential hybridization among genera within Theeae revealed previously also remains to be tested further. Here we conducted a comprehensive phylogenomic study of Theaceae based on transcriptomes and low-depth whole-genome sequencing of 57 species as well as additional plastome sequence data from previous work. Phylogenetic analyses suggested that Stewartieae was the first-diverging clade in Theaceae, consistent with previous study using plastomic data. Within Theeae, the highly supported Apterosperma-Laplacea clade grouped with Pyrenaria with maximum support based on the partitioned and unpartitioned concatenation analyses using the 610 low-copy nuclear genes, leaving Camellia and Polyspora as another sister genera in the tribe. PhyloNet analyses suggested one reticulation event within Camellia and Pyrenaria respectively, but no intergeneric reticulations were detected in Theeae. Another introgression was found between Gordonia lasianthus and the common ancestor of Gordonieae during the Late Oligocene. The existing land bridges (e.g. Bering land bridge) might have facilitated this ancient introgression. Further researches need to be conducted to uncover the interspecific introgression pattern within Camellia. Ks distribution analyses supported the tea family shared one whole-genome duplication (WGD) event Ad-β, which was recently mapped to the clade containing core Ericales, Primuloids, Polemonioids and Lecythidaceae.

2005 ◽  
Vol 18 (2) ◽  
pp. 103-109 ◽  
Author(s):  
Kan Nobuta ◽  
Tom Ashfield ◽  
Sun Kim ◽  
Roger W. Innes

Arabidopsis thaliana is believed to have experienced at least two and possibly three whole-genome duplication events in its evolutionary history. In order to investigate the evolutionary relationships between these duplication events and diversification of disease resistance (R) genes, segmental-duplication events containing R genes belonging to the nucleotide binding-leucine rich repeat (NB-LRR) class were identified. Of 153 segmental-duplication events containing NB-LRR genes, only 22 contained NB-LRR genes in both members of the duplication pair, indicating a high frequency of NB-LRR gene loss after wholegenome duplication. The relative age of the duplication events was estimated based on the average synonymous substitution rate of the duplicated gene pairs in the segments. These data were combined with phylogenetic analyses. NB-LRR genes present in segment pairs derived from the most recent whole-genome duplication event, estimated to have occurred only 20 to 40 million years ago, occupy very distant branches of the NB-LRR phylogenetic tree. These data suggest that when NB-LRR clusters are duplicated as part of a whole-genome duplication, homoeologous NB-LRR genes are preferentially lost, either by eliminating one copy of the cluster or by eliminating individual genes such that only paralogous NB-LRR genes are maintained.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Sarah Marburger ◽  
Patrick Monnahan ◽  
Paul J. Seear ◽  
Simon H. Martin ◽  
Jordan Koch ◽  
...  

AbstractAdaptive gene flow is a consequential phenomenon across all kingdoms. Although recognition is increasing, there is no study showing that bidirectional gene flow mediates adaptation at loci that manage core processes. We previously discovered concerted molecular changes among interacting members of the meiotic machinery controlling crossover number upon adaptation to whole-genome duplication (WGD) in Arabidopsis arenosa. Here we conduct a population genomic study to test the hypothesis that adaptation to WGD has been mediated by adaptive gene flow between A. arenosa and A. lyrata. We find that A. lyrata underwent WGD more recently than A. arenosa, suggesting that pre-adapted alleles have rescued nascent A. lyrata, but we also detect gene flow in the opposite direction at functionally interacting loci under the most extreme levels of selection. These data indicate that bidirectional gene flow allowed for survival after WGD, and that the merger of these species is greater than the sum of their parts.


2019 ◽  
Author(s):  
Sarah Marburger ◽  
Patrick Monnahan ◽  
Paul J. Seear ◽  
Simon H. Martin ◽  
Jordan Koch ◽  
...  

AbstractAdaptive gene flow is a consequential evolutionary phenomenon across all kingdoms of life. While recognition of widespread gene flow is growing, examples lack of bidirectional gene flow mediating adaptations at specific loci that cooperatively manage core cellular processes. We previously described concerted molecular changes among physically interacting members of the meiotic machinery controlling crossover number and distribution upon adaptation to whole genome duplication (WGD) in Arabidopsis arenosa. Here we conduct a population genomic study to test the hypothesis that escape from extinction following the trauma of WGD was mediated by adaptive gene flow between A. arenosa and its congener Arabidopsis lyrata. We show that A. lyrata underwent WGD more recently than A. arenosa, indicating that specific pre-adapted alleles donated by A. arenosa underwent selection and rescued the nascent A. lyrata tetraploids from early extinction. At the same time, we detect specific signals of gene flow in the opposite direction at other functionally interacting gene coding loci that display dramatic signatures of selective sweep in both tetraploid species. Cytological analysis shows that A. lyrata tetraploids exhibit similar levels of meiotic stability as A. arenosa tetraploids. Taken together, these data indicate that bidirectional gene flow allowed for an escape from extinction of the young autopolyploids, especially the rare tetraploid A. lyrata, and suggest that the merger of these species is greater than the sum of their parts.


Genetics ◽  
2000 ◽  
Vol 156 (3) ◽  
pp. 1249-1257
Author(s):  
Ilya Ruvinsky ◽  
Lee M Silver ◽  
Jeremy J Gibson-Brown

Abstract The duplication of preexisting genes has played a major role in evolution. To understand the evolution of genetic complexity it is important to reconstruct the phylogenetic history of the genome. A widely held view suggests that the vertebrate genome evolved via two successive rounds of whole-genome duplication. To test this model we have isolated seven new T-box genes from the primitive chordate amphioxus. We find that each amphioxus gene generally corresponds to two or three vertebrate counterparts. A phylogenetic analysis of these genes supports the idea that a single whole-genome duplication took place early in vertebrate evolution, but cannot exclude the possibility that a second duplication later took place. The origin of additional paralogs evident in this and other gene families could be the result of subsequent, smaller-scale chromosomal duplications. Our findings highlight the importance of amphioxus as a key organism for understanding evolution of the vertebrate genome.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Gareth B. Gillard ◽  
Lars Grønvold ◽  
Line L. Røsæg ◽  
Matilde Mengkrog Holen ◽  
Øystein Monsen ◽  
...  

Abstract Background Whole genome duplication (WGD) events have played a major role in eukaryotic genome evolution, but the consequence of these extreme events in adaptive genome evolution is still not well understood. To address this knowledge gap, we used a comparative phylogenetic model and transcriptomic data from seven species to infer selection on gene expression in duplicated genes (ohnologs) following the salmonid WGD 80–100 million years ago. Results We find rare cases of tissue-specific expression evolution but pervasive expression evolution affecting many tissues, reflecting strong selection on maintenance of genome stability following genome doubling. Ohnolog expression levels have evolved mostly asymmetrically, by diverting one ohnolog copy down a path towards lower expression and possible pseudogenization. Loss of expression in one ohnolog is significantly associated with transposable element insertions in promoters and likely driven by selection on gene dosage including selection on stoichiometric balance. We also find symmetric expression shifts, and these are associated with genes under strong evolutionary constraints such as ribosome subunit genes. This possibly reflects selection operating to achieve a gene dose reduction while avoiding accumulation of “toxic mutations”. Mechanistically, ohnolog regulatory divergence is dictated by the number of bound transcription factors in promoters, with transposable elements being one likely source of novel binding sites driving tissue-specific gains in expression. Conclusions Our results imply pervasive adaptive expression evolution following WGD to overcome the immediate challenges posed by genome doubling and to exploit the long-term genetic opportunities for novel phenotype evolution.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Amit Rai ◽  
Hideki Hirakawa ◽  
Ryo Nakabayashi ◽  
Shinji Kikuchi ◽  
Koki Hayashi ◽  
...  

AbstractPlant genomes remain highly fragmented and are often characterized by hundreds to thousands of assembly gaps. Here, we report chromosome-level reference and phased genome assembly of Ophiorrhiza pumila, a camptothecin-producing medicinal plant, through an ordered multi-scaffolding and experimental validation approach. With 21 assembly gaps and a contig N50 of 18.49 Mb, Ophiorrhiza genome is one of the most complete plant genomes assembled to date. We also report 273 nitrogen-containing metabolites, including diverse monoterpene indole alkaloids (MIAs). A comparative genomics approach identifies strictosidine biogenesis as the origin of MIA evolution. The emergence of strictosidine biosynthesis-catalyzing enzymes precede downstream enzymes’ evolution post γ whole-genome triplication, which occurred approximately 110 Mya in O. pumila, and before the whole-genome duplication in Camptotheca acuminata identified here. Combining comparative genome analysis, multi-omics analysis, and metabolic gene-cluster analysis, we propose a working model for MIA evolution, and a pangenome for MIA biosynthesis, which will help in establishing a sustainable supply of camptothecin.


Sign in / Sign up

Export Citation Format

Share Document