scholarly journals Dipeptides are minimalistic but sufficient for liquid-liquid phase separation

2021 ◽  
Author(s):  
Yiming Tang ◽  
Santu Bera ◽  
Yifei Yao ◽  
Jiyuan Zeng ◽  
Zenghui Lao ◽  
...  

AbstractLiquid-liquid phase separation (LLPS) of proteins mediates the assembly of biomolecular condensates involved in physiological and pathological processes. Identifying the minimalistic building blocks and the sequence determinant of protein phase separation is of urgent importance but remains challenging due to the enormous sequence space and difficulties of existing methodologies in characterizing the phase behavior of ultrashort peptides. Here we demonstrate computational tools to efficiently quantify the microscopic fluidity and density of liquid-condensates/solid-aggregates and the temperature-dependent phase diagram of peptides. Utilizing our approaches, we comprehensively predict the LLPS abilities of all 400 dipeptide combinations of coded amino acids based on 492 micro-second molecular dynamics simulations, and observe the occurrences of spontaneous LLPS. We identify 54 dipeptides that form solid-like aggregates and three categories of dipeptides with high LLPS propensity. Our predictions are validated by turbidity assays and differential interference contrast (DIC) microscopy on four representative dipeptides (WW, QW, GF, and VI). Phase coexistence diagrams are constructed to explore the temperature dependence of LLPS. Our results reveal that aromatic moieties are crucial for a dipeptide to undergo LLPS, and hydrophobic and polar components are indispensable. We demonstrate for the first time that dipeptides, minimal but complete, possess multivalent interactions sufficient for LLPS, suggesting that LLPS is a general property of peptides/proteins, independent of their sequence length. This study provides a computational and experimental approach to the prediction and characterization of the phase behavior of minimalistic peptides, and will be helpful for understanding the sequence-dependence and molecular mechanism of protein phase separation.SignificanceProtein liquid-liquid phase separation (LLPS) is associated with human health and diseases. Identifying the minimalistic building blocks and sequence determinants of LLPS is of urgent importance but remains computationally challenging partially due to the lack of methodologies characterizing the liquid condensates. Herein we provide approaches to evaluate LLPS ability of dipeptides, and screen all 400 dipeptides by MD simulations combined with multi-bead-per-residue models which capture key interactions driving LLPS that are missing in one-bead-per-residue models. Three categories of LLPS dipeptides are identified and the experimentally-verified QW dipeptide is by far the smallest LLPS system. Our results suggest that dipeptides, minimal but complete, possess multivalent interactions sufficient for LLPS, and LLPS is a general property of peptides/proteins, independent of their length.

2018 ◽  
Vol 660 ◽  
pp. 77-81 ◽  
Author(s):  
Chanita Sungkapreecha ◽  
Mark J. Beily ◽  
Jörg Kressler ◽  
Walter W. Focke ◽  
René Androsch

2021 ◽  
Vol 118 (45) ◽  
pp. e2100968118
Author(s):  
Aishwarya Agarwal ◽  
Sandeep K. Rai ◽  
Anamika Avni ◽  
Samrat Mukhopadhyay

Biomolecular condensation via liquid–liquid phase separation of intrinsically disordered proteins/regions (IDPs/IDRs) along with other biomolecules is proposed to control critical cellular functions, whereas aberrant phase transitions are associated with a range of neurodegenerative diseases. Here, we show that a disease-associated stop codon mutation of the prion protein (PrP) at tyrosine 145 (Y145Stop), resulting in a truncated, highly disordered, N-terminal IDR, spontaneously phase-separates into dynamic liquid-like droplets. Phase separation of this highly positively charged N-terminal segment is promoted by the electrostatic screening and a multitude of weak, transient, multivalent, intermolecular interactions. Single-droplet Raman measurements, in conjunction with an array of bioinformatic, spectroscopic, microscopic, and mutagenesis studies, revealed a highly mobile internal organization within the liquid-like condensates. The phase behavior of Y145Stop is modulated by RNA. Lower RNA:protein ratios promote condensation at a low micromolar protein concentration under physiological conditions. At higher concentrations of RNA, phase separation is abolished. Upon aging, these highly dynamic liquid-like droplets gradually transform into ordered, β-rich, amyloid-like aggregates. These aggregates formed via phase transitions display an autocatalytic self-templating characteristic involving the recruitment and binding-induced conformational conversion of monomeric Y145Stop into amyloid fibrils. In contrast to this intrinsically disordered truncated variant, the wild-type full-length PrP exhibits a much lower propensity for both condensation and maturation into amyloids, hinting at a possible protective role of the C-terminal domain. Such an interplay of molecular factors in modulating the protein phase behavior might have much broader implications in cell physiology and disease.


Author(s):  
Masahiro Kawano ◽  
Koichiro Sadakane ◽  
Hiroki Iwase ◽  
Masaru Matsugami ◽  
Bogdan A MAREKHA ◽  
...  

Liquid–liquid phase separation of binary systems for imidazolium-based ionic liquids (ILs), 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([Cnmim][TFSI], n represents the alkyl chain length of the cation) with 1,4-dioxane (1,4-DIO) has been observed as...


Soft Matter ◽  
2022 ◽  
Author(s):  
Paul Pullara ◽  
Ibraheem Alshareedah ◽  
Priya Banerjee

Liquid-liquid phase separation (LLPS) of multivalent biopolymers is a ubiquitous process in biological systems and is of importance in bio-mimetic soft matter design. The phase behavior of biomolecules, such as...


2019 ◽  
Author(s):  
Antonia Statt ◽  
Helena Casademunt ◽  
Clifford P. Brangwynne ◽  
Athanassios Z. Panagiotopoulos

Phase separation of intrinsically disordered proteins is important for the formation of membraneless organelles, or biomolecular condensates, which play key roles in the regulation of biochemical processes within cells. In this work, we investigated the phase separation of different sequences of a coarse-grained model for intrinsically disordered proteins and discovered a surprisingly rich phase behavior. We studied both the fraction of total hydrophobic parts and the distribution of hydrophobic parts. Not surprisingly, sequences with larger hydrophobic fractions showed conventional liquid-liquid phase separation. The location of the critical point was systematically influenced by the terminal beads of the sequence, due to changes in interfacial composition and tension. For sequences with lower hydrophobicity, we observed not only conventional liquid-liquid phase separation, but also reentrant phase behavior, in which the liquid phase density decreases at lower temperatures. For some sequences, we observed formation of open phases consisting of aggregates, rather than a normal liquid. These aggregates had overall lower densities than the conventional liquid phases, and exhibited complex geometries with large interconnected string-like or membrane-like clusters. Our findings suggest that minor alterations in the ordering of residues may lead to large changes in the phase behavior of the protein, a fact of significant potential relevance for biology.


2018 ◽  
Vol 69 (6) ◽  
pp. 965-978.e6 ◽  
Author(s):  
Thuy P. Dao ◽  
Regina-Maria Kolaitis ◽  
Hong Joo Kim ◽  
Kevin O’Donovan ◽  
Brian Martyniak ◽  
...  

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Yi-Ping Chiu ◽  
Yung-Chen Sun ◽  
De-Chen Qiu ◽  
Yu-Hao Lin ◽  
Yin-Quan Chen ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Wei Guo ◽  
Andrew B. Kinghorn ◽  
Yage Zhang ◽  
Qingchuan Li ◽  
Aditi Dey Poonam ◽  
...  

AbstractThe synthetic pathways of life’s building blocks are envisaged to be through a series of complex prebiotic reactions and processes. However, the strategy to compartmentalize and concentrate biopolymers under prebiotic conditions remains elusive. Liquid-liquid phase separation is a mechanism by which membraneless organelles form inside cells, and has been hypothesized as a potential mechanism for prebiotic compartmentalization. Associative phase separation of oppositely charged species has been shown to partition RNA, but the strongly negative charge exhibited by RNA suggests that RNA-polycation interactions could inhibit RNA folding and its functioning inside the coacervates. Here, we present a prebiotically plausible pathway for non-associative phase separation within an evaporating all-aqueous sessile droplet. We quantitatively investigate the kinetic pathway of phase separation triggered by the non-uniform evaporation rate, together with the Marangoni flow-driven hydrodynamics inside the sessile droplet. With the ability to undergo liquid-liquid phase separation, the drying droplets provide a robust mechanism for formation of prebiotic membraneless compartments, as demonstrated by localization and storage of nucleic acids, in vitro transcription, as well as a three-fold enhancement of ribozyme activity. The compartmentalization mechanism illustrated in this model system is feasible on wet organophilic silica-rich surfaces during early molecular evolution.


Soft Matter ◽  
2016 ◽  
Vol 12 (46) ◽  
pp. 9334-9341 ◽  
Author(s):  
Stefano Da Vela ◽  
Michal K. Braun ◽  
Andreas Dörr ◽  
Alessandro Greco ◽  
Johannes Möller ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document