Assessment of the UCST-type liquid-liquid phase separation mechanism of imidazolium-based ionic liquid, [C8mim][TFSI], and 1,4-dioxane by SANS, NMR, IR, and MD simulations

Author(s):  
Masahiro Kawano ◽  
Koichiro Sadakane ◽  
Hiroki Iwase ◽  
Masaru Matsugami ◽  
Bogdan A MAREKHA ◽  
...  

Liquid–liquid phase separation of binary systems for imidazolium-based ionic liquids (ILs), 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([Cnmim][TFSI], n represents the alkyl chain length of the cation) with 1,4-dioxane (1,4-DIO) has been observed as...

2016 ◽  
Vol 45 (39) ◽  
pp. 15532-15540 ◽  
Author(s):  
Yuko Fukuda ◽  
Koichi Kajihara ◽  
Shiori Kakinoki ◽  
Junhyeok Jang ◽  
Hirohisa Yoshida ◽  
...  

Trimetoxy- and triethoxysilanes with the same n-alkyl groups yield polysilsesquioxane liquids of similar properties by cosolvent-free hydrolytic polycondensation via aging.


2018 ◽  
Vol 2018 ◽  
pp. 1-5
Author(s):  
Xiaosi Sun ◽  
Weixin Hao ◽  
Teng Ma ◽  
Junting Zhang ◽  
Guihong Geng

Solidification microstructures of Cu-40 wt.% Pb alloy were examined under different undercooling degrees. The liquid phase separation mechanism in the systems with stable miscibility gaps mainly involved Ostwald ripening, Brownian motion, Marangoni migration, and Stokes motion. Stokes had little influence on the liquid phase separation in the early phase and played a leading role in the later period. The liquid phase separation mechanism of Cu-40 wt.% Pb hypermonotectic alloy was illustrated in detail.


2021 ◽  
Author(s):  
Yiming Tang ◽  
Santu Bera ◽  
Yifei Yao ◽  
Jiyuan Zeng ◽  
Zenghui Lao ◽  
...  

AbstractLiquid-liquid phase separation (LLPS) of proteins mediates the assembly of biomolecular condensates involved in physiological and pathological processes. Identifying the minimalistic building blocks and the sequence determinant of protein phase separation is of urgent importance but remains challenging due to the enormous sequence space and difficulties of existing methodologies in characterizing the phase behavior of ultrashort peptides. Here we demonstrate computational tools to efficiently quantify the microscopic fluidity and density of liquid-condensates/solid-aggregates and the temperature-dependent phase diagram of peptides. Utilizing our approaches, we comprehensively predict the LLPS abilities of all 400 dipeptide combinations of coded amino acids based on 492 micro-second molecular dynamics simulations, and observe the occurrences of spontaneous LLPS. We identify 54 dipeptides that form solid-like aggregates and three categories of dipeptides with high LLPS propensity. Our predictions are validated by turbidity assays and differential interference contrast (DIC) microscopy on four representative dipeptides (WW, QW, GF, and VI). Phase coexistence diagrams are constructed to explore the temperature dependence of LLPS. Our results reveal that aromatic moieties are crucial for a dipeptide to undergo LLPS, and hydrophobic and polar components are indispensable. We demonstrate for the first time that dipeptides, minimal but complete, possess multivalent interactions sufficient for LLPS, suggesting that LLPS is a general property of peptides/proteins, independent of their sequence length. This study provides a computational and experimental approach to the prediction and characterization of the phase behavior of minimalistic peptides, and will be helpful for understanding the sequence-dependence and molecular mechanism of protein phase separation.SignificanceProtein liquid-liquid phase separation (LLPS) is associated with human health and diseases. Identifying the minimalistic building blocks and sequence determinants of LLPS is of urgent importance but remains computationally challenging partially due to the lack of methodologies characterizing the liquid condensates. Herein we provide approaches to evaluate LLPS ability of dipeptides, and screen all 400 dipeptides by MD simulations combined with multi-bead-per-residue models which capture key interactions driving LLPS that are missing in one-bead-per-residue models. Three categories of LLPS dipeptides are identified and the experimentally-verified QW dipeptide is by far the smallest LLPS system. Our results suggest that dipeptides, minimal but complete, possess multivalent interactions sufficient for LLPS, and LLPS is a general property of peptides/proteins, independent of their length.


2021 ◽  
Vol 433 (2) ◽  
pp. 166731
Author(s):  
Yanxian Lin ◽  
Yann Fichou ◽  
Andrew P. Longhini ◽  
Luana C. Llanes ◽  
Pengyi Yin ◽  
...  

Author(s):  
Yanting Xing ◽  
Aparna Nandakumar ◽  
Aleksandr Kakinen ◽  
Yunxiang Sun ◽  
Thomas P. Davis ◽  
...  

2021 ◽  
Author(s):  
Kazuki Murakami ◽  
Shinji Kajimoto ◽  
Daiki Shibata ◽  
Kunisato Kuroi ◽  
Fumihiko Fujii ◽  
...  

Liquid–liquid phase separation (LLPS) plays an important role in a variety of biological processes and is also associated with protein aggregation in neurodegenerative diseases. Quantification of LLPS is necessary to...


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jing Liu ◽  
Ying Xie ◽  
Jing Guo ◽  
Xin Li ◽  
Jingjing Wang ◽  
...  

AbstractDevelopment of chemoresistance is the main reason for failure of clinical management of multiple myeloma (MM), but the genetic and epigenetic aberrations that interact to confer such chemoresistance remains unknown. In the present study, we find that high steroid receptor coactivator-3 (SRC-3) expression is correlated with relapse/refractory and poor outcomes in MM patients treated with bortezomib (BTZ)-based regimens. Furthermore, in immortalized cell lines, high SRC-3 enhances resistance to proteasome inhibitor (PI)-induced apoptosis. Overexpressed histone methyltransferase NSD2 in patients bearing a t(4;14) translocation or in BTZ-resistant MM cells coordinates elevated SRC-3 by enhancing its liquid–liquid phase separation to supranormally modify histone H3 lysine 36 dimethylation (H3K36me2) modifications on promoters of anti-apoptotic genes. Targeting SRC-3 or interference of its interactions with NSD2 using a newly developed inhibitor, SI-2, sensitizes BTZ treatment and overcomes drug resistance both in vitro and in vivo. Taken together, our findings elucidate a previously unrecognized orchestration of SRC-3 and NSD2 in acquired drug resistance of MM and suggest that SI-2 may be efficacious for overcoming drug resistance in MM patients.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2074
Author(s):  
Sara Tabandeh ◽  
Cristina Elisabeth Lemus ◽  
Lorraine Leon

Electrostatic interactions, and specifically π-interactions play a significant role in the liquid-liquid phase separation of proteins and formation of membraneless organelles/or biological condensates. Sequence patterning of peptides allows creating protein-like structures and controlling the chemistry and interactions of the mimetic molecules. A library of oppositely charged polypeptides was designed and synthesized to investigate the role of π-interactions on phase separation and secondary structures of polyelectrolyte complexes. Phenylalanine was chosen as the π-containing residue and was used together with lysine or glutamic acid in the design of positively or negatively charged sequences. The effect of charge density and also the substitution of fluorine on the phenylalanine ring, known to disrupt π-interactions, were investigated. Characterization analysis using MALDI-TOF mass spectroscopy, H NMR, and circular dichroism (CD) confirmed the molecular structure and chiral pattern of peptide sequences. Despite an alternating sequence of chirality previously shown to promote liquid-liquid phase separation, complexes appeared as solid precipitates, suggesting strong interactions between the sequence pairs. The secondary structures of sequence pairs showed the formation of hydrogen-bonded structures with a β-sheet signal in FTIR spectroscopy. The presence of fluorine decreased hydrogen bonding due to its inhibitory effect on π-interactions. π-interactions resulted in enhanced stability of complexes against salt, and higher critical salt concentrations for complexes with more π-containing amino acids. Furthermore, UV-vis spectroscopy showed that sequences containing π-interactions and increased charge density encapsulated a small charged molecule with π-bonds with high efficiency. These findings highlight the interplay between ionic, hydrophobic, hydrogen bonding, and π-interactions in polyelectrolyte complex formation and enhance our understanding of phase separation phenomena in protein-like structures.


Sign in / Sign up

Export Citation Format

Share Document