scholarly journals Chromosome-level genome assembly of Acanthopagrus latus using PacBio and Hi-C technologies

2021 ◽  
Author(s):  
Dong Gao ◽  
Wenyu Fang ◽  
Joanna Collins ◽  
James Torrance ◽  
Ying Yan ◽  
...  

The yellowfin seabream, Acanthopagrus latus, is widely distributed throughout the Indo-West Pacific. This fish is an ideal model species in which to study the mechanism of sex reversal since it exhibits a specific feature: sequential hermaphrodite. Here, we report a chromosome-scale assembly of the A. latus based on PacBio and Hi-C data. 22,485 protein-coding genes were annotated in whole genome level using transcriptome data. Taken together, this highly accurate, chromosome-level reference genome can provide a valuable resource to elucidate the mechanism of sex reversal for A. latus.

2021 ◽  
Author(s):  
Xiao Su ◽  
Baoan Wang ◽  
Xiaolin Geng ◽  
Yuefan Du ◽  
Qinqin Yang ◽  
...  

Abstract Background: Genetic and functional genomics studies require a high-quality genome assembly. Tomato (Solanum lycopersicum), an important horticultural crop, is an ideal model species for the study of fruit development. Results: Here, we assembled an updated reference genome of S. lycopersicum cv. Heinz 1706 that was 799.09 Mb in length, containing 34,384 predicted protein-coding genes and 65.66% repetitive sequences. By comparing the genomes of S. lycopersicum and S. pimpinellifolium LA2093, we found a large number of genomic fragments probably associated with human selection, which may have had crucial roles in the domestication of tomato. We also used a recombinant inbred line (RIL) population to generate a high-density genetic map with high resolution and accuracy. Using these resources, we identified a number of candidate genes that were likely to be related to important agronomic traits in tomato. Conclusion:Our results offer opportunities for understanding the evolution of the tomato genome and will facilitate the study of genetic mechanisms in tomato biology.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Xiao Su ◽  
Baoan Wang ◽  
Xiaolin Geng ◽  
Yuefan Du ◽  
Qinqin Yang ◽  
...  

Abstract Background Genetic and functional genomics studies require a high-quality genome assembly. Tomato (Solanum lycopersicum), an important horticultural crop, is an ideal model species for the study of fruit development. Results Here, we assembled an updated reference genome of S. lycopersicum cv. Heinz 1706 that was 799.09 Mb in length, containing 34,384 predicted protein-coding genes and 65.66% repetitive sequences. By comparing the genomes of S. lycopersicum and S. pimpinellifolium LA2093, we found a large number of genomic fragments probably associated with human selection, which may have had crucial roles in the domestication of tomato. We also used a recombinant inbred line (RIL) population to generate a high-density genetic map with high resolution and accuracy. Using these resources, we identified a number of candidate genes that were likely to be related to important agronomic traits in tomato. Conclusion Our results offer opportunities for understanding the evolution of the tomato genome and will facilitate the study of genetic mechanisms in tomato biology.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Baohua Chen ◽  
Zhixiong Zhou ◽  
Qiaozhen Ke ◽  
Yidi Wu ◽  
Huaqiang Bai ◽  
...  

Abstract Larimichthys crocea is an endemic marine fish in East Asia that belongs to Sciaenidae in Perciformes. L. crocea has now been recognized as an “iconic” marine fish species in China because not only is it a popular food fish in China, it is a representative victim of overfishing and still provides high value fish products supported by the modern large-scale mariculture industry. Here, we report a chromosome-level reference genome of L. crocea generated by employing the PacBio single molecule sequencing technique (SMRT) and high-throughput chromosome conformation capture (Hi-C) technologies. The genome sequences were assembled into 1,591 contigs with a total length of 723.86 Mb and a contig N50 length of 2.83 Mb. After chromosome-level scaffolding, 24 scaffolds were constructed with a total length of 668.67 Mb (92.48% of the total length). Genome annotation identified 23,657 protein-coding genes and 7262 ncRNAs. This highly accurate, chromosome-level reference genome of L. crocea provides an essential genome resource to support the development of genome-scale selective breeding and restocking strategies of L. crocea.


Author(s):  
Kazuhiro Sato ◽  
Martin Mascher ◽  
Axel Himmelbach ◽  
Georg Haberer ◽  
Manuel Spannagl ◽  
...  

Abstract Barley (Hordeum vulgare) was domesticated from its wild ancestral form ca. 10,000 years ago in the Fertile Crescent and is widely cultivated throughout the world, except for in tropical areas. The genome size of both cultivated barley and its conspecific wild ancestor is approximately 5 Gb. High-quality chromosome-level assemblies of 19 cultivated and one wild barley genotype were recently established by pan-genome analysis. Here, we release another equivalent short-read assembly of the wild barley accession ‘OUH602’. A series of genetic and genomic resources were developed for this genotype in prior studies. Our assembly contains more than 4.4 Gb of sequence, with a scaffold N50 value of over 10 Mb. The haplotype shows high collinearity with the most recently updated barley reference genome, ‘Morex’ V3, with some inversions. Gene projections based on ‘Morex’ gene models revealed 46,807 protein-coding sequences and 43,375 protein coding genes. Alignments to publicly available sequences of bacterial artificial chromosome (BAC) clones of ‘OUH602’ confirm the high accuracy of the assembly. Since more loci of interest have been identified in ‘OUH602’, the release of this assembly, with detailed genomic information, should accelerate gene identification and the utilization of this key wild barley accession.


GigaScience ◽  
2020 ◽  
Vol 9 (6) ◽  
Author(s):  
Amanda Warr ◽  
Nabeel Affara ◽  
Bronwen Aken ◽  
Hamid Beiki ◽  
Derek M Bickhart ◽  
...  

Abstract Background The domestic pig (Sus scrofa) is important both as a food source and as a biomedical model given its similarity in size, anatomy, physiology, metabolism, pathology, and pharmacology to humans. The draft reference genome (Sscrofa10.2) of a purebred Duroc female pig established using older clone-based sequencing methods was incomplete, and unresolved redundancies, short-range order and orientation errors, and associated misassembled genes limited its utility. Results We present 2 annotated highly contiguous chromosome-level genome assemblies created with more recent long-read technologies and a whole-genome shotgun strategy, 1 for the same Duroc female (Sscrofa11.1) and 1 for an outbred, composite-breed male (USMARCv1.0). Both assemblies are of substantially higher (>90-fold) continuity and accuracy than Sscrofa10.2. Conclusions These highly contiguous assemblies plus annotation of a further 11 short-read assemblies provide an unprecedented view of the genetic make-up of this important agricultural and biomedical model species. We propose that the improved Duroc assembly (Sscrofa11.1) become the reference genome for genomic research in pigs.


2020 ◽  
Author(s):  
Tingting Song ◽  
Mengyan Zhou ◽  
Yuying Yuan ◽  
Jinqiu Yu ◽  
Hua Cai ◽  
...  

AbstractAmphicarpaea edgeworthii, an annual twining herb, is a widely distributed species and an ideal model for studying complex flowering types and evolutionary mechanisms of species. Herein, we generated a high-quality assembly of A. edgeworthii by using a combination of PacBio, 10× Genomics libraries, and Hi-C mapping technologies. The final 11 chromosome-level scaffolds covered 90.61% of the estimated genome (343.78 Mb), which is the first chromosome-scale assembled genome of an amphicarpic plant. These data will be beneficial for the discovery of genes that control major agronomic traits, spur genetic improvement of and functional genetic studies in legumes, and supply comparative genetic resources for other amphicarpic plants.


GigaScience ◽  
2020 ◽  
Vol 9 (4) ◽  
Author(s):  
Yunfeng Li ◽  
Lei Gao ◽  
Yongjia Pan ◽  
Meilin Tian ◽  
Yulong Li ◽  
...  

Abstract Background Jellyfish belong to the phylum Cnidaria, which occupies an important phylogenetic location in the early-branching Metazoa lineages. The jellyfish Rhopilema esculentum is an important fishery resource in China. However, the genome resource of R. esculentum has not been reported to date. Findings In this study, we constructed a chromosome-level genome assembly of R. esculentum using Pacific Biosciences, Illumina, and Hi-C sequencing technologies. The final genome assembly was ∼275.42 Mb, with a contig N50 length of 1.13 Mb. Using Hi-C technology to identify the contacts among contigs, 260.17 Mb (94.46%) of the assembled genome were anchored onto 21 pseudochromosomes with a scaffold N50 of 12.97 Mb. We identified 17,219 protein-coding genes, with an average CDS length of 1,575 bp. The genome-wide phylogenetic analysis indicated that R. esculentum might have evolved more slowly than the other scyphozoan species used in this study. In addition, 127 toxin-like genes were identified, and 1 toxin-related “hub” was found by a genomic survey. Conclusions We have generated a chromosome-level genome assembly of R. esculentum that could provide a valuable genomic background for studying the biology and pharmacology of jellyfish, as well as the evolutionary history of Cnidaria.


GigaScience ◽  
2021 ◽  
Vol 10 (4) ◽  
Author(s):  
Tiantian Zhao ◽  
Wenxu Ma ◽  
Zhen Yang ◽  
Lisong Liang ◽  
Xin Chen ◽  
...  

Abstract Background Corylus heterophylla Fisch. is a species of the Betulaceae family native to China. As an economically and ecologically important nut tree, C. heterophylla can survive in extremely low temperatures (–30 to –40 °C). To deepen our knowledge of the Betulaceae species and facilitate the use of C. heterophylla for breeding and its genetic improvement, we have sequenced the whole genome of C. heterophylla. Findings Based on >64.99 Gb (∼175.30×) of Nanopore long reads, we assembled a 370.75-Mb C. heterophylla genome with contig N50 and scaffold N50 sizes of 2.07 and 31.33  Mb, respectively, accounting for 99.23% of the estimated genome size (373.61 Mb). Furthermore, 361.90 Mb contigs were anchored to 11 chromosomes using Hi-C link data, representing 97.61% of the assembled genome sequences. Transcriptomes representing 4 different tissues were sequenced to assist protein-coding gene prediction. A total of 27,591 protein-coding genes were identified, of which 92.02% (25,389) were functionally annotated. The phylogenetic analysis showed that C. heterophylla is close to Ostrya japonica, and they diverged from their common ancestor ∼52.79 million years ago. Conclusions We generated a high-quality chromosome-level genome of C. heterophylla. This genome resource will promote research on the molecular mechanisms of how the hazelnut responds to environmental stresses and serves as an important resource for genome-assisted improvement in cold and drought resistance of the Corylus genus.


2019 ◽  
Author(s):  
Amanda Warr ◽  
Nabeel Affara ◽  
Bronwen Aken ◽  
H. Beiki ◽  
Derek M. Bickhart ◽  
...  

AbstractThe domestic pig (Sus scrofa) is important both as a food source and as a biomedical model with high anatomical and immunological similarity to humans. The draft reference genome (Sscrofa10.2) of a purebred Duroc female pig established using older clone-based sequencing methods was incomplete and unresolved redundancies, short range order and orientation errors and associated misassembled genes limited its utility. We present two annotated highly contiguous chromosome-level genome assemblies created with more recent long read technologies and a whole genome shotgun strategy, one for the same Duroc female (Sscrofa11.1) and one for an outbred, composite breed male (USMARCv1.0). Both assemblies are of substantially higher (>90-fold) continuity and accuracy than Sscrofa10.2. These highly contiguous assemblies plus annotation of a further 11 short read assemblies provide an unprecedented view of the genetic make-up of this important agricultural and biomedical model species. We propose that the improved Duroc assembly (Sscrofa11.1) become the reference genome for genomic research in pigs.


Sign in / Sign up

Export Citation Format

Share Document