scholarly journals Laminar perfusion imaging with zoomed arterial spin labeling at 7 Tesla

2021 ◽  
Author(s):  
Xingfeng Shao ◽  
Fanhua Guo ◽  
Qinyang Shou ◽  
Kai Wang ◽  
Kay Jann ◽  
...  

Laminar fMRI based on BOLD and CBV contrast at ultrahigh magnetic fields has been applied for studying the dynamics of mesoscopic brain networks. However, the quantitative interpretations of BOLD/CBV fMRI results are confounded by different baseline physiology across cortical layers. Here we introduce a novel 3D zoomed pseudo-continuous arterial spin labeling technique at 7T that offers the unique capability for quantitative measurements of laminar cerebral blood flow (CBF) both at rest and during task activation with high spatial specificity and sensitivity. We found arterial transit time in superficial layers is ~100 msec shorter than in middle/deep layers revealing the dynamics of labeled blood flowing from pial arteries to downstream microvasculature. Resting state CBF peaked in the middle layers which is highly consistent with microvascular density measured from human cortex specimens. Finger tapping induced a robust two-peak laminar profile of CBF increases in the superficial (somatosensory and premotor input) and deep (spinal output) layers of M1, while finger brushing task induced a weaker CBF increase in superficial layers (somatosensory input). We further demonstrated that top-down attention induced a predominant CBF increase in deep layers and a smaller CBF increase on top of the lower baseline CBF in superficial layers of V1 (feedback cortical input), while bottom-up stimulus driven activity peaked in the middle layers (feedforward thalamic input). These quantitative laminar profiles of perfusion activity suggest an important role of M1 superficial layers for the computation of finger movements, and that visual attention may amplify deep layer output to the subcortex.

2021 ◽  
Vol 85 (6) ◽  
pp. 3227-3240
Author(s):  
Kai Wang ◽  
Xingfeng Shao ◽  
Lirong Yan ◽  
Samantha J. Ma ◽  
Jin Jin ◽  
...  

Author(s):  
Christian R. Meixner ◽  
Christian K. Eisen ◽  
Sebastian Schmitter ◽  
Max Müller ◽  
Jürgen Herrler ◽  
...  

2021 ◽  
Vol 15 ◽  
Author(s):  
Katja Neumann ◽  
Martin Schidlowski ◽  
Matthias Günther ◽  
Tony Stöcker ◽  
Emrah Düzel

The perfusion parameters cerebral blood flow (CBF) and arterial transit time (ATT) measured with arterial spin labeling (ASL) magnetic resonance imaging (MRI) provide valuable essentials to assess the integrity of cerebral tissue. Brain perfusion changes, due to aging, an intervention, or neurodegenerative diseases for example, could be investigated in longitudinal ASL studies with reliable ASL sequences. Generally, pseudo-continuous ASL (pCASL) is preferred because of its larger signal-to-noise ratio (SNR) compared to pulsed ASL (PASL) techniques. Available pCASL versions differ regarding their feature details. To date only little is known about the reliability and reproducibility of CBF and ATT measures obtained with the innovative Hadamard encoded pCASL variant, especially if applied on participants in old age. Therefore, we investigated an in-house developed Hadamard encoded pCASL sequence on a group of healthy elderly at two different 3 Tesla Siemens MRI systems (Skyra and mMR Biograph) and evaluated CBF and ATT reliability and reproducibility for several regions-of-interests (ROI). Calculated within-subject coefficients of variation (wsCV) demonstrated an excellent reliability of perfusion measures, whereas ATT appeared to be even more reliable than CBF [e.g., wsCV(CBF) = 2.9% vs. wsCV(ATT) = 2.3% for a gray matter (GM) ROI on Skyra system]. Additionally, a substantial agreement of perfusion values acquired on both MRI systems with an inter-session interval of 78 ± 17.6 days was shown by high corresponding intra-class correlation (ICC) coefficients [e.g., ICC(CBF) = 0.704 and ICC(ATT) = 0.754 for a GM ROI]. The usability of this novel Hadamard encoded pCASL sequence might improve future follow-up perfusion studies of the aging and/or diseased brain.


Sign in / Sign up

Export Citation Format

Share Document