scholarly journals A functional genomic approach to identify reference genes for human pancreatic beta cell real-time quantitative RT-PCR analysis

2021 ◽  
Author(s):  
Maria Ines Alvelos ◽  
Florian Szymczak ◽  
Angela Castela ◽  
Sandra Marin-Canas ◽  
Bianca Marmontel de Souza ◽  
...  

Exposure of human pancreatic beta cells to pro-inflammatory cytokines or metabolic stressors is used to model events related to type 1 and type 2 diabetes, respectively. Quantitative real-time PCR is commonly used to quantify changes in gene expression. The selection of the most adequate reference gene(s) for gene expression normalization is an important pre-requisite to obtain accurate and reliable results. There are no universally applicable reference genes, and the human beta cell expression of commonly used reference genes can be altered by different stressors. Here we aimed to identify the most stably expressed genes in human beta cells to normalize quantitative real-time PCR gene expression. We used comprehensive RNA-sequencing data from the human pancreatic beta cell line EndoC-BH1, human islets exposed to cytokines or the free fatty acid palmitate in order to identify the most stably expressed genes. Genes were filtered based on their level of significance (adjusted P-value >0.05), fold-change (|fold-change| <1.5) and a coefficient of variation <10%. Candidate reference genes were validated by quantitative real-time PCR in independent samples. We identified a total of 264 genes stably expressed in EndoC-BH1 cells and human islets following cytokine- or palmitate-induced stress, displaying a low coefficient of variation. Validation by quantitative real-time PCR of the top five genes ARF1, CWC15, RAB7A, SIAH1 and VAPA corroborated their expression stability under most of the tested conditions. Further validation in independent samples indicated that the geometric mean of ACTB and VAPA expression can be used as a reliable normalizing factor in human beta cells.

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Ana Érika Inácio Gomes ◽  
Leonardo Prado Stuchi ◽  
Nathália Maria Gonçalves Siqueira ◽  
João Batista Henrique ◽  
Renato Vicentini ◽  
...  

Genome ◽  
2018 ◽  
Vol 61 (5) ◽  
pp. 349-358 ◽  
Author(s):  
Yanchun You ◽  
Miao Xie ◽  
Liette Vasseur ◽  
Minsheng You

Gene expression analysis provides important clues regarding gene functions, and quantitative real-time PCR (qRT-PCR) is a widely used method in gene expression studies. Reference genes are essential for normalizing and accurately assessing gene expression. In the present study, 16 candidate reference genes (ACTB, CyPA, EF1-α, GAPDH, HSP90, NDPk, RPL13a, RPL18, RPL19, RPL32, RPL4, RPL8, RPS13, RPS4, α-TUB, and β-TUB) from Plutella xylostella were selected to evaluate gene expression stability across different experimental conditions using five statistical algorithms (geNorm, NormFinder, Delta Ct, BestKeeper, and RefFinder). The results suggest that different reference genes or combinations of reference genes are suitable for normalization in gene expression studies of P. xylostella according to the different developmental stages, strains, tissues, and insecticide treatments. Based on the given experimental sets, the most stable reference genes were RPS4 across different developmental stages, RPL8 across different strains and tissues, and EF1-α across different insecticide treatments. A comprehensive and systematic assessment of potential reference genes for gene expression normalization is essential for post-genomic functional research in P. xylostella, a notorious pest with worldwide distribution and a high capacity to adapt and develop resistance to insecticides.


Gene Reports ◽  
2019 ◽  
Vol 14 ◽  
pp. 94-99 ◽  
Author(s):  
Zhongdian Dong ◽  
Pushun Chen ◽  
Ning Zhang ◽  
Shunkai Huang ◽  
Hairui Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document