scholarly journals High-resolution structure and dynamics of mitochondrial complex I – insights into the proton pumping mechanism

2021 ◽  
Author(s):  
Kristian Parey ◽  
Jonathan Lasham ◽  
Deryck J. Mills ◽  
Amina Djurabekova ◽  
Outi Haapanen ◽  
...  

Mitochondrial NADH:ubiquinone oxidoreductase (complex I) is a 1 MDa membrane protein complex with a central role in energy metabolism. Redox-driven proton translocation by complex I contributes substantially to the proton motive force that drives ATP synthase. Several structures of complex I from bacteria and mitochondria have been determined but its catalytic mechanism has remained controversial. We here present the cryo-EM structure of complex I from Yarrowia lipolytica at 2.1 Å resolution, which reveals the positions of more than 1600 protein-bound water molecules, of which ~100 are located in putative proton translocation pathways. Another structure of the same complex under steady-state activity conditions at 3.4 Å resolution indicates conformational transitions that we associate with proton injection into the central hydrophilic axis. By combining high-resolution structural data with site-directed mutagenesis and large-scale molecular dynamics simulations, we define details of the proton translocation pathways, and offer new insights into the redox-coupled proton pumping mechanism of complex I.

2019 ◽  
Vol 48 (1) ◽  
pp. 165-184 ◽  
Author(s):  
Ahmed-Noor A. Agip ◽  
James N. Blaza ◽  
Justin G. Fedor ◽  
Judy Hirst

Single-particle electron cryomicroscopy (cryo-EM) has led to a revolution in structural work on mammalian respiratory complex I. Complex I (mitochondrial NADH:ubiquinone oxidoreductase), a membrane-bound redox-driven proton pump, is one of the largest and most complicated enzymes in the mammalian cell. Rapid progress, following the first 5-Å resolution data on bovine complex I in 2014, has led to a model for mouse complex I at 3.3-Å resolution that contains 96% of the 8,518 residues and to the identification of different particle classes, some of which are assigned to biochemically defined states. Factors that helped improve resolution, including improvements to biochemistry, cryo-EM grid preparation, data collection strategy, and image processing, are discussed. Together with recent structural data from an ancient relative, membrane-bound hydrogenase, cryo-EM on mammalian complex I has provided new insights into the proton-pumping machinery and a foundation for understanding the enzyme's catalytic mechanism.


1996 ◽  
Vol 318 (1) ◽  
pp. 343-349 ◽  
Author(s):  
Susan K BUCHANAN ◽  
John E. WALKER

A new chromatographic procedure has been developed for the isolation of F1Fo-ATPase and NADH:ubiquinone oxidoreductase (complex I) from a single batch of bovine heart mitochondria. The method employed dodecyl β-Δ-maltoside, a monodisperse, homogeneous detergent in which many respiratory complexes exhibit high activity, for solubilization and subsequent purification by ammonium sulphate fractionation and column chromatography. A combination of anion-exchange, gel-filtration, and dye-ligand affinity chromatography was used to purify both complexes to homogeneity. The F1Fo-ATPase preparation contains only the 16 known subunits of the enzyme. It has oligomycin-sensitive ATP hydrolysis activity and, as demonstrated elsewhere, when reconstituted into lipid vesicles it is capable of ATP-dependent proton pumping and of ATP synthesis driven by a proton gradient [Groth and Walker (1996) Biochem. J. 318, 351–357]. The complex I preparation contains all of the subunits identified in other preparations of the enzyme, and has rotenone-sensitive NADH:ubiquinone oxidoreductase and NADH:ferricyanide oxidoreductase activities. The procedure is rapid and reproducible, yielding 50–80 mg of purified F1Fo-ATPase and 20–40 mg of purified complex I from 1 g of mitochondrial membranes. Both preparations are devoid of phospholipids, and gel filtration and dynamic light scattering experiments indicate that they are monodisperse. Therefore, the preparations fulfil important prerequisites for structural analysis.


2017 ◽  
Vol 114 (48) ◽  
pp. 12737-12742 ◽  
Author(s):  
Justin G. Fedor ◽  
Andrew J. Y. Jones ◽  
Andrea Di Luca ◽  
Ville R. I. Kaila ◽  
Judy Hirst

Respiratory complex I (NADH:ubiquinone oxidoreductase), one of the largest membrane-bound enzymes in mammalian cells, powers ATP synthesis by using the energy from electron transfer from NADH to ubiquinone-10 to drive protons across the energy-transducing mitochondrial inner membrane. Ubiquinone-10 is extremely hydrophobic, but in complex I the binding site for its redox-active quinone headgroup is ∼20 Å above the membrane surface. Structural data suggest it accesses the site by a narrow channel, long enough to accommodate almost all of its ∼50-Å isoprenoid chain. However, how ubiquinone/ubiquinol exchange occurs on catalytically relevant timescales, and whether binding/dissociation events are involved in coupling electron transfer to proton translocation, are unknown. Here, we use proteoliposomes containing complex I, together with a quinol oxidase, to determine the kinetics of complex I catalysis with ubiquinones of varying isoprenoid chain length, from 1 to 10 units. We interpret our results using structural data, which show the hydrophobic channel is interrupted by a highly charged region at isoprenoids 4–7. We demonstrate that ubiquinol-10 dissociation is not rate determining and deduce that ubiquinone-10 has both the highest binding affinity and the fastest binding rate. We propose that the charged region and chain directionality assist product dissociation, and that isoprenoid stepping ensures short transit times. These properties of the channel do not benefit the exhange of short-chain quinones, for which product dissociation may become rate limiting. Thus, we discuss how the long channel does not hinder catalysis under physiological conditions and the possible roles of ubiquinone/ubiquinol binding/dissociation in energy conversion.


2015 ◽  
Vol 112 (37) ◽  
pp. 11571-11576 ◽  
Author(s):  
Vivek Sharma ◽  
Galina Belevich ◽  
Ana P. Gamiz-Hernandez ◽  
Tomasz Róg ◽  
Ilpo Vattulainen ◽  
...  

Complex I functions as a redox-linked proton pump in the respiratory chains of mitochondria and bacteria, driven by the reduction of quinone (Q) by NADH. Remarkably, the distance between the Q reduction site and the most distant proton channels extends nearly 200 Å. To elucidate the molecular origin of this long-range coupling, we apply a combination of large-scale molecular simulations and a site-directed mutagenesis experiment of a key residue. In hybrid quantum mechanics/molecular mechanics simulations, we observe that reduction of Q is coupled to its local protonation by the His-38/Asp-139 ion pair and Tyr-87 of subunit Nqo4. Atomistic classical molecular dynamics simulations further suggest that formation of quinol (QH2) triggers rapid dissociation of the anionic Asp-139 toward the membrane domain that couples to conformational changes in a network of conserved charged residues. Site-directed mutagenesis data confirm the importance of Asp-139; upon mutation to asparagine the Q reductase activity is inhibited by 75%. The current results, together with earlier biochemical data, suggest that the proton pumping in complex I is activated by a unique combination of electrostatic and conformational transitions.


2011 ◽  
Vol 39 (3) ◽  
pp. 799-806 ◽  
Author(s):  
Hannah R. Bridges ◽  
James A. Birrell ◽  
Judy Hirst

Complex I (NADH:ubiquinone oxidoreductase) is crucial to respiration in many aerobic organisms. The hydrophilic domain of complex I, containing nine or more redox cofactors, and comprising seven conserved core subunits, protrudes into the mitochondrial matrix or bacterial cytoplasm. The α-helical membrane-bound hydrophobic domain contains a further seven core subunits that are mitochondrial-encoded in eukaryotes and named the ND subunits (ND1–ND6 and ND4L). Complex I couples the oxidation of NADH in the hydrophilic domain to ubiquinone reduction and proton translocation in the hydrophobic domain. Although the mechanisms of NADH oxidation and intramolecular electron transfer are increasingly well understood, the mechanisms of ubiquinone reduction and proton translocation remain only poorly defined. Recently, an α-helical model of the hydrophobic domain of bacterial complex I [Efremov, Baradaran and Sazanov (2010) Nature 465, 441–447] revealed how the 63 transmembrane helices of the seven core subunits are arranged, and thus laid a foundation for the interpretation of functional data and the formulation of mechanistic proposals. In the present paper, we aim to correlate information from sequence analyses, site-directed mutagenesis studies and mutations that have been linked to human diseases, with information from the recent structural model. Thus we aim to identify and discuss residues in the ND subunits of mammalian complex I which are important in catalysis and for maintaining the enzyme's structural and functional integrity.


2009 ◽  
Vol 422 (1) ◽  
pp. 151-159 ◽  
Author(s):  
Hannah R. Bridges ◽  
Ljuban Grgic ◽  
Michael E. Harbour ◽  
Judy Hirst

NADH:ubiquinone oxidoreductase (complex I) is an entry point for electrons into the respiratory chain in many eukaryotes. It couples NADH oxidation and ubiquinone reduction to proton translocation across the mitochondrial inner membrane. Because complex I deficiencies occur in a wide range of neuromuscular diseases, including Parkinson's disease, there is a clear need for model eukaryotic systems to facilitate structural, functional and mutational studies. In the present study, we describe the purification and characterization of the complexes I from two yeast species, Pichia pastoris and Pichia angusta. They are obligate aerobes which grow to very high cell densities on simple medium, as yeast-like, spheroidal cells. Both Pichia enzymes catalyse inhibitor-sensitive NADH:ubiquinone oxidoreduction, display EPR spectra which match closely to those from other eukaryotic complexes I, and show patterns characteristic of complex I in SDS/PAGE analysis. Mass spectrometry was used to identify several canonical complex I subunits. Purified P. pastoris complex I has a particularly high specific activity, and incorporating it into liposomes demonstrates that NADH oxidation is coupled to the generation of a protonmotive force. Interestingly, the rate of NADH-induced superoxide production by the Pichia enzymes is more than twice as high as that of the Bos taurus enzyme. Our results both resolve previous disagreement about whether Pichia species encode complex I, furthering understanding of the evolution of complex I within dikarya, and they provide two new, robust and highly active model systems for study of the structure and catalytic mechanism of eukaryotic complexes I.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Owen D. Jarman ◽  
Olivier Biner ◽  
John J. Wright ◽  
Judy Hirst

AbstractMitochondrial complex I (NADH:ubiquinone oxidoreductase) is a crucial metabolic enzyme that couples the free energy released from NADH oxidation and ubiquinone reduction to the translocation of four protons across the inner mitochondrial membrane, creating the proton motive force for ATP synthesis. The mechanism by which the energy is captured, and the mechanism and pathways of proton pumping, remain elusive despite recent advances in structural knowledge. Progress has been limited by a lack of model systems able to combine functional and structural analyses with targeted mutagenic interrogation throughout the entire complex. Here, we develop and present the α-proteobacterium Paracoccus denitrificans as a suitable bacterial model system for mitochondrial complex I. First, we develop a robust purification protocol to isolate highly active complex I by introducing a His6-tag on the Nqo5 subunit. Then, we optimize the reconstitution of the enzyme into liposomes, demonstrating its proton pumping activity. Finally, we develop a strain of P. denitrificans that is amenable to complex I mutagenesis and create a catalytically inactive variant of the enzyme. Our model provides new opportunities to disentangle the mechanism of complex I by combining mutagenesis in every subunit with established interrogative biophysical measurements on both the soluble and membrane bound enzymes.


2016 ◽  
Vol 160 (4) ◽  
pp. 205-215 ◽  
Author(s):  
Madhavan Narayanan ◽  
Joseph A. Sakyiama ◽  
Mahmoud M. Elguindy ◽  
Eiko Nakamaru-Ogiso

2001 ◽  
Vol 114 (21) ◽  
pp. 3915-3921 ◽  
Author(s):  
Stefan J. Kerscher ◽  
Andrea Eschemann ◽  
Pamela M. Okun ◽  
Ulrich Brandt

Alternative NADH:ubiquinone oxidoreductases are single subunit enzymes capable of transferring electrons from NADH to ubiquinone without contributing to the proton gradient across the respiratory membrane. The obligately aerobic yeast Yarrowia lipolytica has only one such enzyme, encoded by the NDH2 gene and located on the external face of the mitochondrial inner membrane. In sharp contrast to ndh2 deletions, deficiencies in nuclear genes for central subunits of proton pumping NADH:ubiquinone oxidoreductases (complex I) are lethal. We have redirected NDH2 to the internal face of the mitochondrial inner membrane by N-terminally attaching the mitochondrial targeting sequence of NUAM, the largest subunit of complex I. Lethality of complex I mutations was rescued by the internal, but not the external version of alternative NADH:ubiquinone oxidoreductase. Internal NDH2 also permitted growth in the presence of complex I inhibitors such as 2-decyl-4-quinazolinyl amine (DQA). Functional expression of NDH2 on both sides of the mitochondrial inner membrane indicates that alternative NADH:ubiquinone oxidoreductase requires no additional components for catalytic activity. Our findings also demonstrate that shuttle mechanisms for the transfer of redox equivalents from the matrix to the cytosolic side of the mitochondrial inner membrane are insufficient in Y. lipolytica.


Sign in / Sign up

Export Citation Format

Share Document