scholarly journals Object motion kinematics influence both feedforward and feedback motor responses during virtual catching

2021 ◽  
Author(s):  
Ana Gómez-Granados ◽  
Isaac Kurtzer ◽  
Tarkeshwar Singh

AbstractAn important window into sensorimotor function is how we catch moving objects. Studies that examined catching of free-falling objects report that the timing of the motor response is independent of the momentum of the projectile, whereas the motor response amplitude scales with projectile momentum. However, this pattern may not be a general strategy of catching since objects accelerate under gravity in a characteristic manner (unlike object motion in the horizontal plane) and the human visual motion-processing system is not adept at encoding acceleration. Accordingly, we developed a new experimental paradigm using a robotic manipulandum and augmented reality where participants stabilized against the impact of a virtual object moving at constant velocity in the horizontal plane. Participants needed to apply an impulse that mirrored the object momentum to bring it to rest and received explicit feedback on their performance. In different blocks, object momentum was varied by an increase in its speed or mass. In contrast to previous reports on free falling objects, we observed that increasing object speed caused earlier onset of arm muscle activity and limb force relative to the impending time to contact. Also, arm force increased as a function of target momentum linked to changes in speed or mass. Our results demonstrate velocity-dependent timing to catch objects and a complex pattern of scaling to momentum.

2008 ◽  
Vol 20 (10) ◽  
pp. 1827-1838 ◽  
Author(s):  
Patrice Senot ◽  
Sylvain Baillet ◽  
Bernard Renault ◽  
Alain Berthoz

Humans demonstrate an amazing ability for intercepting and catching moving targets, most noticeably in fast-speed ball games. However, the few studies exploring the neural bases of interception in humans and the classical studies on visual motion processing and visuomotor interactions have reported rather long latencies of cortical activations that cannot explain the performances observed in most natural interceptive actions. The aim of our experiment was twofold: (1) describe the spatio-temporal unfolding of cortical activations involved in catching a moving target and (2) provide evidence that fast cortical responses can be elicited by a visuomotor task with high temporal constraints and decide if these responses are task or stimulus dependent. Neuromagnetic brain activity was recorded with whole-head coverage while subjects were asked to catch a free-falling ball or simply pay attention to the ball trajectory. A fast, likely stimulus-dependent, propagation of neural activity was observed along the dorsal visual pathway in both tasks. Evaluation of latencies of activations in the main cortical regions involved in the tasks revealed that this entire network of regions was activated within 40 msec. Moreover, comparison of experimental conditions revealed similar patterns of activation except in contralateral sensorimotor regions where common and catch-specific activations were differentiated.


2019 ◽  
Vol 121 (4) ◽  
pp. 1207-1221 ◽  
Author(s):  
Ryo Sasaki ◽  
Dora E. Angelaki ◽  
Gregory C. DeAngelis

Multiple areas of macaque cortex are involved in visual motion processing, but their relative functional roles remain unclear. The medial superior temporal (MST) area is typically divided into lateral (MSTl) and dorsal (MSTd) subdivisions that are thought to be involved in processing object motion and self-motion, respectively. Whereas MSTd has been studied extensively with regard to processing visual and nonvisual self-motion cues, little is known about self-motion signals in MSTl, especially nonvisual signals. Moreover, little is known about how self-motion and object motion signals interact in MSTl and how this differs from interactions in MSTd. We compared the visual and vestibular heading tuning of neurons in MSTl and MSTd using identical stimuli. Our findings reveal that both visual and vestibular heading signals are weaker in MSTl than in MSTd, suggesting that MSTl is less well suited to participate in self-motion perception than MSTd. We also tested neurons in both areas with a variety of combinations of object motion and self-motion. Our findings reveal that vestibular signals improve the separability of coding of heading and object direction in both areas, albeit more strongly in MSTd due to the greater strength of vestibular signals. Based on a marginalization technique, population decoding reveals that heading and object direction can be more effectively dissociated from MSTd responses than MSTl responses. Our findings help to clarify the respective contributions that MSTl and MSTd make to processing of object motion and self-motion, although our conclusions may be somewhat specific to the multipart moving objects that we employed. NEW & NOTEWORTHY Retinal image motion reflects contributions from both the observer’s self-motion and the movement of objects in the environment. The neural mechanisms by which the brain dissociates self-motion and object motion remain unclear. This study provides the first systematic examination of how the lateral subdivision of area MST (MSTl) contributes to dissociating object motion and self-motion. We also examine, for the first time, how MSTl neurons represent translational self-motion based on both vestibular and visual cues.


2020 ◽  
Vol 117 (50) ◽  
pp. 32165-32168
Author(s):  
Arvid Guterstam ◽  
Michael S. A. Graziano

Recent evidence suggests a link between visual motion processing and social cognition. When person A watches person B, the brain of A apparently generates a fictitious, subthreshold motion signal streaming from B to the object of B’s attention. These previous studies, being correlative, were unable to establish any functional role for the false motion signals. Here, we directly tested whether subthreshold motion processing plays a role in judging the attention of others. We asked, if we contaminate people’s visual input with a subthreshold motion signal streaming from an agent to an object, can we manipulate people’s judgments about that agent’s attention? Participants viewed a display including faces, objects, and a subthreshold motion hidden in the background. Participants’ judgments of the attentional state of the faces was significantly altered by the hidden motion signal. Faces from which subthreshold motion was streaming toward an object were judged as paying more attention to the object. Control experiments showed the effect was specific to the agent-to-object motion direction and to judging attention, not action or spatial orientation. These results suggest that when the brain models other minds, it uses a subthreshold motion signal, streaming from an individual to an object, to help represent attentional state. This type of social-cognitive model, tapping perceptual mechanisms that evolved to process physical events in the real world, may help to explain the extraordinary cultural persistence of beliefs in mind processes having physical manifestation. These findings, therefore, may have larger implications for human psychology and cultural belief.


1998 ◽  
Vol 53 (7-8) ◽  
pp. 622-627
Author(s):  
Walter J. Gillner

Abstract In the early steps of visual information processing motion is one of the most important queues for the development of spatial representations. Obstacle detection and egomotion estimation are only two examples of the powerfulness of visual motion detection systems. The underlying process of information extraction has to be active due to the observer’s capabilities of egomotion. This means that the observer’s motion has an impact on the pro­jected retinal motion field. Therefore one of the challenging tasks for biological as well as for technical vision systems is to couple retinal motion and egomotion and to uncouple egomotion and object motion. The following sections describe a model that couples visual motion processing with the egomotion parameters of a moving observer. Beneath a theoreti­cal introduction of the model an application to traffic scene analysis is presented. A t last the paper relates the model to biological motion processing systems.


2006 ◽  
Vol 46 (4) ◽  
pp. 536-544 ◽  
Author(s):  
J. Langrová ◽  
M. Kuba ◽  
J. Kremláček ◽  
Z. Kubová ◽  
F. Vít

1988 ◽  
Vol 60 (3) ◽  
pp. 940-965 ◽  
Author(s):  
M. R. Dursteler ◽  
R. H. Wurtz

1. Previous experiments have shown that punctate chemical lesions within the middle temporal area (MT) of the superior temporal sulcus (STS) produce deficits in the initiation and maintenance of pursuit eye movements (10, 34). The present experiments were designed to test the effect of such chemical lesions in an area within the STS to which MT projects, the medial superior temporal area (MST). 2. We injected ibotenic acid into localized regions of MST, and we observed two deficits in pursuit eye movements, a retinotopic deficit and a directional deficit. 3. The retinotopic deficit in pursuit initiation was characterized by the monkey's inability to match eye speed to target speed or to adjust the amplitude of the saccade made to acquire the target to compensate for target motion. This deficit was related to the initiation of pursuit to targets moving in any direction in the visual field contralateral to the side of the brain with the lesion. This deficit was similar to the deficit we found following damage to extrafoveal MT except that the affected area of the visual field frequently extended throughout the entire contralateral visual field tested. 4. The directional deficit in pursuit maintenance was characterized by a failure to match eye speed to target speed once the fovea had been brought near the moving target. This deficit occurred only when the target was moving toward the side of the lesion, regardless of whether the target began to move in the ipsilateral or contralateral visual field. There was no deficit in the amplitude of saccades made to acquire the target, or in the amplitude of the catch-up saccades made to compensate for the slowed pursuit. The directional deficit is similar to the one we described previously following chemical lesions of the foveal representation in the STS. 5. Retinotopic deficits resulted from any of our injections in MST. Directional deficits resulted from lesions limited to subregions within MST, particularly lesions that invaded the floor of the STS and the posterior bank of the STS just lateral to MT. Extensive damage to the densely myelinated area of the anterior bank or to the posterior parietal area on the dorsal lip of the anterior bank produced minimal directional deficits. 6. We conclude that damage to visual motion processing in MST underlies the retinotopic pursuit deficit just as it does in MT. MST appears to be a sequential step in visual motion processing that occurs before all of the visual motion information is transmitted to the brainstem areas related to pursuit.(ABSTRACT TRUNCATED AT 400 WORDS)


Sign in / Sign up

Export Citation Format

Share Document