visuomotor task
Recently Published Documents


TOTAL DOCUMENTS

125
(FIVE YEARS 41)

H-INDEX

27
(FIVE YEARS 3)

2022 ◽  
Vol 3 ◽  
Author(s):  
Chisa Aoyama ◽  
Ryoma Goya ◽  
Naofumi Suematsu ◽  
Koji Kadota ◽  
Yuji Yamamoto ◽  
...  

In a table tennis rally, players perform interceptive actions on a moving ball continuously in a short time, such that the acquisition process of visual information is an important determinant of the performance of the action. However, because it is technically hard to measure gaze movement in a real game, little is known about how gaze behavior is conducted during the continuous visuomotor actions and contributes to the performance. To examine these points, we constructed a novel psychophysical experiment model enabling a continuous visuomotor task without spatial movement of any body parts, including the arm and head, and recorded the movement of the gaze and effector simultaneously at high spatiotemporal resolution. In the task, Gabor patches (target) moved one after another at a constant speed from right to left at random vertical positions on an LC display. Participants hit the target with a cursor moving vertically on the left side of the display by controlling their prehensile force on a force sensor. Participants hit the target with the cursor using a rapid-approaching movement (rapid cursor approach, RCA). Their gaze also showed rapid saccadic approaching movement (saccadic eye approach, SEA), reaching the predicted arrival point of the target earlier than the cursor. The RCA reached in or near the Hit zone in the successful (Hit) trial, but ended up away from it in the unsuccessful (Miss) trial, suggesting the spatial accuracy of the RCA determines the task's success. The SEA in the Hit trial ended nearer the target than the Miss trial. The spatial accuracy of the RCA diminished when the target disappeared 100 ms just after the end of the SEA, suggesting that visual information acquired after the saccade acted as feedback information to correct the cursor movement online for the cursor to reach the target. There was a target speed condition that the target disappearance did not compromise RCA's spatial accuracy, implying the possible RCA correction based on the post-saccadic gaze location information. These experiments clarified that gaze behavior conducted during fast continuous visuomotor actions enables online correction of the ongoing interceptive movement of an effector, improving visuomotor performance.


Author(s):  
Jelle Habay ◽  
Matthias Proost ◽  
Jonas De Wachter ◽  
Jesús Díaz-García ◽  
Kevin De Pauw ◽  
...  

Mental fatigue (MF) is a psychobiological state negatively impacting both cognitive and physical performance. Although recent research implies that some table tennis (TT) performance outcomes are impaired by MF, open skill sports such as TT require a more detailed overview of MF-related performance decrements. Moreover, research into MF and sport-specific psychomotor performance lacks the inclusion of brain-related measurements to identify MF mechanisms. Eleven experienced TT players participated in this randomized counterbalanced crossover trial. Participants were either required to perform an individualized Stroop task (MF condition) or watch a documentary (control condition). The primary outcomes were reaction time on a sport-specific visuomotor task and EEG activity throughout the trial. The subjective feeling of MF was significantly different between both conditions and confirmed that the MF condition induced the mentally fatigue state of participants (p < 0.001), though no behavioral indicators (i.e., decrease in performance on Stroop and flanker task) of MF. MF worsened reaction time on the visuomotor task, while other secondary measurements remained largely ambiguous. Spectral power (i.e., decreases in upper α band and θ band) was influenced by MF, while ERPs measured during the visuomotor task remained unaltered. The present study confirms that MF negatively impacts table tennis performance, specifically inhibitory stimuli during the visuomotor task. These findings also further augment our understanding of the effects of MF on human performance.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Simon Nougaret ◽  
Valeria Fascianelli ◽  
Sabrina Ravel ◽  
Aldo Genovesio

AbstractRecent studies have shown that temporal stability of the neuronal activity over time can be estimated by the structure of the spike-count autocorrelation of neuronal populations. This estimation, called the intrinsic timescale, has been computed for several cortical areas and can be used to propose a cortical hierarchy reflecting a scale of temporal receptive windows between areas. In this study, we performed an autocorrelation analysis on neuronal populations of three basal ganglia (BG) nuclei, including the striatum and the subthalamic nucleus (STN), the input structures of the BG, and the external globus pallidus (GPe). The analysis was performed during the baseline period of a motivational visuomotor task in which monkeys had to apply different amounts of force to receive different amounts of reward. We found that the striatum and the STN have longer intrinsic timescales than the GPe. Moreover, our results allow for the placement of these subcortical structures within the already-defined scale of cortical temporal receptive windows. Estimates of intrinsic timescales are important in adding further constraints in the development of computational models of the complex dynamics among these nuclei and throughout cortico-BG-thalamo-cortical loops.


2021 ◽  
Author(s):  
Philip R L Parker ◽  
Eliott T T Abe ◽  
Natalie T Beatie ◽  
Emmalyn S P Leonard ◽  
Dylan M Martins ◽  
...  

In natural contexts, sensory processing and motor output are closely coupled, which is reflected in the fact that many brain areas contain both sensory and movement signals. However, standard reductionist paradigms decouple sensory decisions from their natural motor consequences, and head-fixation prevents the natural sensory consequences of self-motion. In particular, movement through the environment provides a number of depth cues beyond stereo vision that are poorly understood. To study the integration of visual processing and motor output in a naturalistic task, we investigated distance estimation in freely moving mice. We found that mice use vision to accurately jump across a variable gap, thus directly coupling a visual computation to its corresponding ethological motor output. Monocular eyelid suture did not affect performance, thus mice can use cues that do not depend on binocular disparity and stereo vision. Under monocular conditions, mice performed more vertical head movements, consistent with the use of motion parallax cues, and optogenetic suppression of primary visual cortex impaired task performance. Together, these results show that mice can use monocular cues, relying on visual cortex, to accurately judge distance. Furthermore, this behavioral paradigm provides a foundation for studying how neural circuits convert sensory information into ethological motor output.


Author(s):  
Dayton J. Kelly ◽  
Sarah L. West ◽  
Nathan O’Keeffe ◽  
Liana E. Brown

Abstract Background Lightweight rowers commonly utilize weight loss techniques over 24-h before competition to achieve the qualifying weight for racing. The objective was to investigate, using a quasi-experimental design, whether changes in weight resulting from dehydration practices are related to changes in proxies of bodily systems involved in rowing and whether these relationships depend on the dehydration technique used. Methods Twelve elite male rowers performed a power test, an incremental VO2max test, and a visuomotor battery following: weight loss via thermal exposure, weight loss via fluid abstinence and then thermal exposure, and no weight loss. The total percent body mass change (%BMC), %BMC attributable to thermal exposure, and %BMC attributable to fluid abstinence were used to predict performance variables. Results Fluid abstinence but not thermal exposure was related to a lower total wattage produced on a incremental VO2max test (b = 4261.51 W/1%BMC, 95%CI = 1502.68–7020.34), lower wattages required to elicit 2 mmol/L (b = 27.84 W/1%BMC, 95%CI = 14.69–40.99) and 4 mmol/L blood lactate (b = 20.45 W/1%BMC, 95%CI = 8.91–31.99), and slower movement time on a visuomotor task (b = -38.06 ms/1%BMC, 95%CI = -62.09–-14.03). Conclusions Dehydration related weight changes are associated with reductions in some proxies of bodily systems involved in rowing but depend on the dehydration technique used.


2021 ◽  
Vol 1 (1) ◽  
pp. 21-29
Author(s):  
Maryam Salehi ◽  
Wesley Pyke ◽  
Hasan Mohammadzadeh ◽  
Mohammad Ali Nazari ◽  
Amir-Homayoun Javadi ◽  
...  

2021 ◽  
Author(s):  
Frank Hubert Hezemans ◽  
Noham Wolpe ◽  
Claire O'Callaghan ◽  
Rong Ye ◽  
Catarina Rua ◽  
...  

Apathy is a debilitating feature of many diseases, including Parkinson's disease. We tested the hypothesis that degeneration of the locus coeruleus-noradrenaline system contributes to apathy by modulating the relative weighting of prior beliefs about action outcomes. Participants with mild-to-moderate idiopathic Parkinson's disease (N=17) completed a double-blind, placebo-controlled, crossover study with 40 mg of the noradrenaline reuptake inhibitor atomoxetine. Prior weighting was inferred from psychophysical analysis of performance in an effort-based visuomotor task, and was confirmed as negatively correlated with apathy. Locus coeruleus integrity was assessed in vivo using magnetisation transfer imaging at 7T. The effect of atomoxetine depended on locus coeruleus integrity: participants with a more degenerate locus coeruleus showed a greater increase in prior weighting on atomoxetine versus placebo. The results indicate a contribution of the noradrenergic system to apathy and potential benefit from noradrenergic treatment of people with Parkinson's disease, subject to stratification according to locus coeruleus integrity.


2021 ◽  
Author(s):  
Felix C Widmer ◽  
Georg B Keller

The experience of coupling between motor output and visual feedback is necessary for the development of visuomotor skills and shapes visuomotor integration in visual cortex. Whether these experience-dependent changes involve plasticity in visual cortex remains unclear. Here, we probed the role of NMDA receptor-dependent plasticity in mouse primary visual cortex (V1) during visuomotor development. Using a conditional knockout of NMDA receptors and a photoactivatable inhibitor of CaMKII, we locally perturbed plasticity in V1 during first visual experience, recorded neuronal activity in V1, and tested the mice in a visuomotor task. We found that perturbing plasticity before, but not after, first visuomotor experience reduces responses to unpredictable stimuli, diminishes the suppression of predictable feedback in V1, and impairs visuomotor skill learning later in life. Our results demonstrate that plasticity in the local V1 circuit during early life is critical for shaping visuomotor integration.


Vision ◽  
2021 ◽  
Vol 5 (2) ◽  
pp. 26
Author(s):  
Peter D. Neilson ◽  
Megan D. Neilson ◽  
Robin T. Bye

Bringing together a Riemannian geometry account of visual space with a complementary account of human movement synergies we present a neurally-feasible computational formulation of visuomotor task performance. This cohesive geometric theory addresses inherent nonlinear complications underlying the match between a visual goal and an optimal action to achieve that goal: (i) the warped geometry of visual space causes the position, size, outline, curvature, velocity and acceleration of images to change with changes in the place and orientation of the head, (ii) the relationship between head place and body posture is ill-defined, and (iii) mass-inertia loads on muscles vary with body configuration and affect the planning of minimum-effort movement. We describe a partitioned visuospatial memory consisting of the warped posture-and-place-encoded images of the environment, including images of visible body parts. We depict synergies as low-dimensional submanifolds embedded in the warped posture-and-place manifold of the body. A task-appropriate synergy corresponds to a submanifold containing those postures and places that match the posture-and-place-encoded visual images that encompass the required visual goal. We set out a reinforcement learning process that tunes an error-reducing association memory network to minimize any mismatch, thereby coupling visual goals with compatible movement synergies. A simulation of a two-degrees-of-freedom arm illustrates that, despite warping of both visual space and posture space, there exists a smooth one-to-one and onto invertible mapping between vision and proprioception.


Author(s):  
Jason A. Whitfield ◽  
Serena R. Holdosh

Introduction The current study examined the extent to which practice amount mediates dual-task interference patterns associated with concurrent performance of a novel speech task and attention-demanding visuomotor task. Method A Sequential Nonword Repetition Task was used to examine the effect of practice on interference associated with concurrent performance of a Visuomotor Pursuit Task. Twenty-five young adult participants were assigned to either an Extended Practice Group or a Limited Practice Group and performed a novel Sequential Nonword Repetition Task in isolation and while performing a concurrent visuomotor pursuit rotor task. Results Participants in the Limited Practice Group who were afforded a limited amount of practice exhibited dual-task interference (i.e., dual-task performance reductions) for both the speech and visuomotor tasks (i.e., bidirectional dual-task interference). Conversely, participants in the Extended Practice Group who were afforded extended practice exhibited little-to-no observable dual-task interference on the nonword repetition task. Conclusion Data from the current investigation suggest that the amount of initial practice mediates the degree of dual-task interference observed when a novel speech production task is performed with an attention-demanding Visuomotor Pursuit Task. Supplemental Material https://doi.org/10.23641/asha.14608071


Sign in / Sign up

Export Citation Format

Share Document