scholarly journals Impaired and Intact Aspects of Attentional Competition and Prioritization during Visual Working Memory Encoding in Schizophrenia

2021 ◽  
Author(s):  
Catherine V Barnes ◽  
Lara Roesler ◽  
Michael Schaum ◽  
Carmen Schiweck ◽  
Benjamin Peters ◽  
...  

Objective: People with schizophrenia (PSZ) are impaired in the attentional prioritization of non-salient but relevant stimuli over salient but irrelevant distractors during visual working memory (VWM) encoding. Conversely, the guidance of top-down attention by external predictive cues is intact. Yet, it is unknown whether this preserved ability can help PSZ overcome impaired attentional prioritization in the presence of salient distractors. Methods: We employed a visuospatial change-detection task using four Gabor Patches with differing orientations in 69 PSZ and 74 healthy controls (HCS). Two patches flickered to reflect saliency and either a predictive or a non-predictive cue was displayed resulting in four conditions. Results: Across all conditions, PSZ stored significantly less information in VWM than HCS (all p < 0.001). With a non-predictive cue, PSZ stored significantly more salient than non-salient information (t140 = 5.66, p < 0.001, dt = 0.5). With a predictive cue, PSZ stored significantly more non-salient information (t140 = 5.70, p < 0.001, dt = 0.5). Conclusion: Our findings support a bottom-up bias in schizophrenia with performance significantly better for visually salient information in the absence of a predictive cue. These results indicate that bottom-up attentional prioritization is disrupted in schizophrenia, but the top-down utilization of cues is intact. We conclude that additional top-down information significantly improves performance in PSZ when non-salient visual information needs to be encoded in working memory.

2018 ◽  
Vol 44 (suppl_1) ◽  
pp. S250-S250
Author(s):  
Catherine Barnes ◽  
Lara Rösler ◽  
Michael Schaum ◽  
Deliah Macht ◽  
Benjamin Peters ◽  
...  

2019 ◽  
Author(s):  
Elio Balestrieri ◽  
Luca Ronconi ◽  
David Melcher

AbstractAttention and Visual Working Memory (VWM) are among the most theoretically detailed and empirically tested constructs in human cognition. Nevertheless, the nature of the interrelation between selective attention and VWM still presents a fundamental controversy: do they rely on the same cognitive resources or not? The present study aims at disentangling this issue by capitalizing on recent evidence showing that attention is a rhythmic phenomenon, oscillating over short time windows. Using a dual-task approach, we combined a classic VWM task with a detection task in which we densely sampled detection performance during the time between the memory and the test array. Our results show that an increment in VWM load was related to a worse detection of near threshold visual stimuli and, importantly, to the presence of an oscillatory pattern in detection performance at ∼5 Hz. Furthermore, our findings suggest that the frequency of this sampling rhythm changes according to the strategic allocation of attentional resources to either the VWM or the detection task. This pattern of results is consistent with a central sampling attentional rhythm which allocates shared attentional resources both to the flow of external visual stimulation and also to the internal maintenance of visual information.


2020 ◽  
pp. 174702182096626
Author(s):  
Lingxia Fan ◽  
Lin Zhang ◽  
Liuting Diao ◽  
Mengsi Xu ◽  
Ruiyang Chen ◽  
...  

Recent studies have demonstrated that in visual working memory (VWM), only items in an active state can guide attention. Further evidence has revealed that items with higher perceptual salience or items prioritised by a valid retro-cue in VWM tend to be in an active state. However, it is unclear which factor (perceptual salience or retro-cues) is more important for influencing the item state in VWM or whether the factors can act concurrently. Experiment 1 examined the role of perceptual salience by asking participants to hold two features with relatively different perceptual salience (colour vs. shape) in VWM while completing a visual search task. Guidance effects were found when either colour or both colour and shape in VWM matched one of the search distractors but not when shape matched. This demonstrated that the more salient feature in VWM can actively guide attention, while the less salient feature cannot. However, when shape in VWM was cued to be more relevant (prioritised) in Experiment 2, we found guidance effects in both colour-match and shape-match conditions. That is, both more salient but non-cued colour and less salient but cued shape could be active in VWM, such that attentional selection was affected by the matching colour or shape in the visual search task. This suggests that bottom-up perceptual salience and top-down retro-cues can jointly determine the active state in VWM.


2018 ◽  
Vol 44 (suppl_1) ◽  
pp. S387-S388
Author(s):  
Mishal Qubad ◽  
Catherine Barnes ◽  
Lara Rösler ◽  
Michael Schaum ◽  
Benjamin Peters ◽  
...  

2012 ◽  
Vol 110 (3) ◽  
pp. 879-890 ◽  
Author(s):  
Junichi Takahashi ◽  
Jiro Gyoba

The effect on the capacity of visual working memory of spatial complexity (as defined by Garner's principle) in rotation and reflection transformation was examined in persons differing along the Autism Spectrum Quotient (AQ), using a change-detection task. On each trial, nine line segments were arrayed in simple, medium, and complex configurations, which were presented in memory and test displays. 27 participants (8 men, 19 women; M age = 22.3 yr., SD = 2.7) were asked whether the orientations of stimuli between two displays were the same or different. On the basis of their AQ scores out of 50 ( M AQ scores = 20.9, SD = 6.3), the participants were divided into groups with high ( n = 13; M AQ scores = 26.2, SD = 4.1) and low ( n = 12; M AQ scores = 15.3, SD = 2.7) self-reported autistic-like traits (High and Low AQ groups, 2 excluded for scores at the median). The results showed that spatial complexity affects the capacity of visual working memory for the Low AQ group but not for the High AQ group, suggesting the functional dissociation of spatial configuration and visual working memory in the High AQ group.


2021 ◽  
Vol 12 ◽  
Author(s):  
Shannon Ross-Sheehy ◽  
Esther Reynolds ◽  
Bret Eschman

The events of the COVID-19 Pandemic forced many psychologists to abandon lab-based approaches and embrace online experimental techniques. Although lab-based testing will always be the gold standard of experimental precision, several protocols have evolved to enable supervised online testing for paradigms that require direct observation and/or interaction with participants. However, many tasks can be completed online in an unsupervised way, reducing reliance on lab-based resources (e.g., personnel and equipment), increasing flexibility for families, and reducing participant anxiety and/or demand characteristics. The current project demonstrates the feasibility and utility of unsupervised online testing by incorporating a classic change-detection task that has been well-validated in previous lab-based research. In addition to serving as proof-of-concept, our results demonstrate that large online samples are quick and easy to acquire, facilitating novel research questions and speeding the dissemination of results. To accomplish this, we assessed visual working memory (VWM) in 4- to 10-year-old children in an unsupervised online change-detection task using arrays of 1–4 colored circles. Maximum capacity (max K) was calculated across the four array sizes for each child, and estimates were found to be on-par with previously published lab-based findings. Importantly, capacity estimates varied markedly across array size, with estimates derived from larger arrays systematically underestimating VWM capacity for our youngest participants. A linear mixed effect analysis (LME) confirmed this observation, revealing significant quadratic trends for 4- through 7-year-old children, with capacity estimates that initially increased with increasing array size and subsequently decreased, often resulting in estimates that were lower than those obtained from smaller arrays. Follow-up analyses demonstrated that these regressions may have been based on explicit guessing strategies for array sizes perceived too difficult to attempt for our youngest children. This suggests important interactions between VWM performance, age, and array size, and further suggests estimates such as optimal array size might capture both quantitative aspects of VWM performance and qualitative effects of attentional engagement/disengagement. Overall, findings suggest that unsupervised online testing of VWM produces reasonably good estimates and may afford many benefits over traditional lab-based testing, though efforts must be made to ensure task comprehension and compliance.


2021 ◽  
pp. 095679762097578
Author(s):  
Martin Constant ◽  
Heinrich R. Liesefeld

Limitations in the ability to temporarily represent information in visual working memory (VWM) are crucial for visual cognition. Whether VWM processing is dependent on an object’s saliency (i.e., how much it stands out) has been neglected in VWM research. Therefore, we developed a novel VWM task that allows direct control over saliency. In three experiments with this task (on 10, 31, and 60 adults, respectively), we consistently found that VWM performance is strongly and parametrically influenced by saliency and that both an object’s relative saliency (compared with concurrently presented objects) and absolute saliency influence VWM processing. We also demonstrated that this effect is indeed due to bottom-up saliency rather than differential fit between each object and the top-down attentional template. A simple computational model assuming that VWM performance is determined by the weighted sum of absolute and relative saliency accounts well for the observed data patterns.


Sign in / Sign up

Export Citation Format

Share Document