scholarly journals A novel class of human milk oligosaccharides based on 6-galactosyllactose and containing N-acetylglucosamine branches extended by oligogalactoses

2021 ◽  
Author(s):  
Franz-Georg Hanisch ◽  
Clemens Kunz

Human milk oligosaccharides (HMOs) have attracted much attention in recent years not only as a prebiotic factor, but in particular as an essential component in infant nutrition related to their impact in innate immunity. The backbone structures of complex HMOs generally contain single or repetitive lacto-N-biose (type 1) or lactosamine (type 2) units in either linear or branched chains extending from a lactose core. While all known branched structures originate from 3,6-substitution of the lactosyl core galactose, we here describe a new class of HMOs that tentatively branch at terminal galactose of 6-galactosyllactose. Another novel feature of this class of HMOs was found in linear oligo-galactosyl chains linked to one of the N-acetylglucosamine (GlcNAc) branches. The novel structures exhibit general formulas with hexose vs. hexosamine contents of 5/2 to 8/2 and can be designated as high-galactose (HG)-HMOs. In addition, up to three fucosyl residues are linked to the octa- to dodecasaccharides, which were detected in two human milk samples from Lewis blood group defined donors. Structural analyses of methylated glycans and their alditols comprised MALDI mass spectrometry, ESI-(CID)MS and linkage analyses by GC-MS of the derived partially methylated alditol acetates. Enzymatic degradation by application of β1-3,4-specific galactosidase supported the presence of terminal galactose linked [beta]1-6 to one of the two GlcNAc branches.

2019 ◽  
Vol 22 (4) ◽  
pp. 330 ◽  
Author(s):  
Badriul Hegar ◽  
Yulianti Wibowo ◽  
Ray Wagiu Basrowi ◽  
Reza Gunadi Ranuh ◽  
Subianto Marto Sudarmo ◽  
...  

Glycobiology ◽  
2011 ◽  
Vol 22 (3) ◽  
pp. 361-368 ◽  
Author(s):  
Erina Yoshida ◽  
Haruko Sakurama ◽  
Masashi Kiyohara ◽  
Masahiro Nakajima ◽  
Motomitsu Kitaoka ◽  
...  

BMB Reports ◽  
2012 ◽  
Vol 45 (8) ◽  
pp. 433-441 ◽  
Author(s):  
Kyung-Hun Jeong ◽  
Vi Nguyen ◽  
Jae-Han Kim

2008 ◽  
Vol 74 (13) ◽  
pp. 3996-4004 ◽  
Author(s):  
Jun Wada ◽  
Takuro Ando ◽  
Masashi Kiyohara ◽  
Hisashi Ashida ◽  
Motomitsu Kitaoka ◽  
...  

ABSTRACT Breast-fed infants often have intestinal microbiota dominated by bifidobacteria in contrast to formula-fed infants. We found that several bifidobacterial strains produce a lacto-N-biosidase that liberates lacto-N-biose I (Galβ1,3GlcNAc; type 1 chain) from lacto-N-tetraose (Galβ1,3GlcNAcβ1,3Galβ1,4Glc), which is a major component of human milk oligosaccharides, and subsequently isolated the gene from Bifidobacterium bifidum JCM1254. The gene, designated lnbB, was predicted to encode a protein of 1,112 amino acid residues containing a signal peptide and a membrane anchor at the N and C termini, respectively, and to possess the domain of glycoside hydrolase family 20, carbohydrate binding module 32, and bacterial immunoglobulin-like domain 2, in that order, from the N terminus. The recombinant enzyme showed substrate preference for the unmodified β-linked lacto-N-biose I structure. Lacto-N-biosidase activity was found in several bifidobacterial strains, but not in the other enteric bacteria, such as clostridia, bacteroides, and lactobacilli, under the tested conditions. These results, together with our recent finding of a novel metabolic pathway specific for lacto-N-biose I in bifidobacterial cells, suggest that some of the bifidobacterial strains are highly adapted for utilizing human milk oligosaccharides with a type 1 chain.


2009 ◽  
Vol 75 (19) ◽  
pp. 6414-6414
Author(s):  
Jun Wada ◽  
Takuro Ando ◽  
Masashi Kiyohara ◽  
Hisashi Ashida ◽  
Motomitsu Kitaoka ◽  
...  

Nutrients ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1105 ◽  
Author(s):  
Magdalena Orczyk-Pawiłowicz ◽  
Jolanta Lis-Kuberka

Apart from optimal nutritional value, human milk is the feeding strategy to support the immature immunological system of developing newborns and infants. The most beneficial dietary carbohydrate components of breast milk are human milk oligosaccharides (HMOs) and glycoproteins (HMGs), involved in both specific and nonspecific immunity. Fucosylated oligosaccharides represent the largest fraction of human milk oligosaccharides, with the simplest and the most abundant being 2′-fucosyllactose (2′-FL). Fucosylated oligosaccharides, as well as glycans of glycoproteins, as beneficial dietary sugars, elicit anti-adhesive properties against fucose-dependent pathogens, and on the other hand are crucial for growth and metabolism of beneficial bacteria, and in this aspect participate in shaping a healthy microbiome. Well-documented secretor status related differences in the fucosylation profile of HMOs and HMGs may play a key but underestimated role in assessment of susceptibility to fucose-dependent pathogen infections, with a potential impact on applied clinical procedures. Nevertheless, due to genetic factors, about 20% of mothers do not provide their infants with beneficial dietary carbohydrates such as 2′-FL and other α1,2-fucosylated oligosaccharides and glycans of glycoproteins, despite breastfeeding them. The lack of such structures may have important implications for a wide range of aspects of infant well-being and healthcare. In light of the above, some artificial mixtures used in infant nutrition are supplemented with 2′-FL to more closely approximate the unique composition of maternal milk, including dietary-derived fucosylated oligosaccharides and glycoproteins.


Sign in / Sign up

Export Citation Format

Share Document