scholarly journals Revolutionising infant nutrition: Benefits of human milk oligosaccharides

2019 ◽  
pp. 6-9
2019 ◽  
Vol 22 (4) ◽  
pp. 330 ◽  
Author(s):  
Badriul Hegar ◽  
Yulianti Wibowo ◽  
Ray Wagiu Basrowi ◽  
Reza Gunadi Ranuh ◽  
Subianto Marto Sudarmo ◽  
...  

2021 ◽  
Author(s):  
Franz-Georg Hanisch ◽  
Clemens Kunz

Human milk oligosaccharides (HMOs) have attracted much attention in recent years not only as a prebiotic factor, but in particular as an essential component in infant nutrition related to their impact in innate immunity. The backbone structures of complex HMOs generally contain single or repetitive lacto-N-biose (type 1) or lactosamine (type 2) units in either linear or branched chains extending from a lactose core. While all known branched structures originate from 3,6-substitution of the lactosyl core galactose, we here describe a new class of HMOs that tentatively branch at terminal galactose of 6-galactosyllactose. Another novel feature of this class of HMOs was found in linear oligo-galactosyl chains linked to one of the N-acetylglucosamine (GlcNAc) branches. The novel structures exhibit general formulas with hexose vs. hexosamine contents of 5/2 to 8/2 and can be designated as high-galactose (HG)-HMOs. In addition, up to three fucosyl residues are linked to the octa- to dodecasaccharides, which were detected in two human milk samples from Lewis blood group defined donors. Structural analyses of methylated glycans and their alditols comprised MALDI mass spectrometry, ESI-(CID)MS and linkage analyses by GC-MS of the derived partially methylated alditol acetates. Enzymatic degradation by application of β1-3,4-specific galactosidase supported the presence of terminal galactose linked [beta]1-6 to one of the two GlcNAc branches.


Nutrients ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1105 ◽  
Author(s):  
Magdalena Orczyk-Pawiłowicz ◽  
Jolanta Lis-Kuberka

Apart from optimal nutritional value, human milk is the feeding strategy to support the immature immunological system of developing newborns and infants. The most beneficial dietary carbohydrate components of breast milk are human milk oligosaccharides (HMOs) and glycoproteins (HMGs), involved in both specific and nonspecific immunity. Fucosylated oligosaccharides represent the largest fraction of human milk oligosaccharides, with the simplest and the most abundant being 2′-fucosyllactose (2′-FL). Fucosylated oligosaccharides, as well as glycans of glycoproteins, as beneficial dietary sugars, elicit anti-adhesive properties against fucose-dependent pathogens, and on the other hand are crucial for growth and metabolism of beneficial bacteria, and in this aspect participate in shaping a healthy microbiome. Well-documented secretor status related differences in the fucosylation profile of HMOs and HMGs may play a key but underestimated role in assessment of susceptibility to fucose-dependent pathogen infections, with a potential impact on applied clinical procedures. Nevertheless, due to genetic factors, about 20% of mothers do not provide their infants with beneficial dietary carbohydrates such as 2′-FL and other α1,2-fucosylated oligosaccharides and glycans of glycoproteins, despite breastfeeding them. The lack of such structures may have important implications for a wide range of aspects of infant well-being and healthcare. In light of the above, some artificial mixtures used in infant nutrition are supplemented with 2′-FL to more closely approximate the unique composition of maternal milk, including dietary-derived fucosylated oligosaccharides and glycoproteins.


2020 ◽  
Vol 11 ◽  
Author(s):  
Lianghui Cheng ◽  
Mensiena B. G. Kiewiet ◽  
Madelon J. Logtenberg ◽  
Andre Groeneveld ◽  
Arjen Nauta ◽  
...  

Pathogens ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 739
Author(s):  
Ulvi K. Gürsoy ◽  
Krista Salli ◽  
Eva Söderling ◽  
Mervi Gürsoy ◽  
Johanna Hirvonen ◽  
...  

Human milk oligosaccharides (HMOs), the third largest solid fraction in human milk, can modulate inflammation through Toll-like receptor signaling, but little is known about their immunomodulatory potential in the oral cavity. In this study, we determined whether the HMOs 2’-fucosyllactose (2’-FL) and 3-fucosyllactose (3-FL) regulate human-beta defensin (hBD)-2 and -3, cathelicidin (hCAP18/LL-37), and cytokine responses in human gingival cells using a three-dimensional oral mucosal culture model. The model was incubated with 0.1% or 1% 2’-FL and 3-FL, alone and in combination, for 5 or 24 h, and hBD-2, hBD-3, and hCAP18/LL-37 were analyzed by immunohistochemistry. The expression profiles of interleukin (IL)-1, IL-1RA, IL-8, and monocyte chemoattractant protein (MCP)-1 were determined by LUMINEX immunoassay. The combination of 1% 2’-FL and 1% 3-FL, and 1% 3-FL alone, for 24 h upregulated hBD-2 protein expression significantly (p < 0.001 and p = 0.016, respectively). No changes in the other antimicrobial peptides or proinflammatory cytokines were observed. Thus, 3-FL, alone and in combination with 2´-FL, stimulates oral mucosal secretion of hBD-2, without effecting a proinflammatory response when studied in an oral mucosal culture model.


Sign in / Sign up

Export Citation Format

Share Document