scholarly journals TRAF2, an innate immune sensor, reciprocally regulates mitophagy and inflammation to maintain cardiac myocyte homeostasis.

2021 ◽  
Author(s):  
Xiucui Ma ◽  
David R Rawnsley ◽  
Attila Kovacs ◽  
Moydul Islam ◽  
John T Murphy ◽  
...  

Mitochondrial damage triggers cell death signaling with catastrophic consequences in long-lived and irreplaceable cells, such as cardiac myocytes. Sensing of leaked mitochondrial DNA upon mitochondrial damage is also a potent trigger of inflammation. Whether the innate immune response pathways monitor mitochondrial damage in mitochondria-rich cardiac myocytes to prevent inflammation and cell death, remains unknown. TRAF2, an adaptor protein downstream of innate immune receptors, localizes to the mitochondria in the unstressed heart, with increased mitochondrial targeting in cardiomyopathic human hearts and after cardiac ischemia-reperfusion injury in mice. Inducible cardiomyocyte-specific deletion of TRAF2 in young adult mice impairs mitophagy with rapid decline in mitochondrial quality, upregulates TLR9 expression in cardiac myocytes, and results in inflammation and cell death manifesting as a fulminant cardiomyopathy. Preventing TLR9-mediated mitochondrial DNA sensing and resultant inflammation provides a short-term reprieve from cardiomyopathy, but persistence of damaged mitochondria results in long-term recrudescence. Restoration of TRAF2, but not the E3 ubiquitin ligase deficient mutant improves mitochondrial quality and rescues cardiomyopathy to restore homeostasis. Thus, the innate immune response acts via TRAF2 as the first line of defense against mitochondrial damage by orchestrating homeostatic mitophagy to dampen myocardial inflammation and prevent cell death.

2020 ◽  
Vol 38 (1) ◽  
pp. 79-98 ◽  
Author(s):  
Ming-Ming Hu ◽  
Hong-Bing Shu

DNA has been known to be a potent immune stimulus for more than half a century. However, the underlying molecular mechanisms of DNA-triggered immune response have remained elusive until recent years. Cyclic GMP-AMP synthase (cGAS) is a major cytoplasmic DNA sensor in various types of cells that detect either invaded foreign DNA or aberrantly located self-DNA. Upon sensing of DNA, cGAS catalyzes the formation of cyclic GMP-AMP (cGAMP), which in turn activates the ER-localized adaptor protein MITA (also named STING) to elicit the innate immune response. The cGAS-MITA axis not only plays a central role in host defense against pathogen-derived DNA but also acts as a cellular stress response pathway by sensing aberrantly located self-DNA, which is linked to the pathogenesis of various human diseases. In this review, we summarize the spatial and temporal mechanisms of host defense to cytoplasmic DNA mediated by the cGAS-MITA axis and discuss the association of malfunctions of this axis with autoimmune and other diseases.


2012 ◽  
Vol 9 (1) ◽  
pp. 208 ◽  
Author(s):  
Zenglei Hu ◽  
Jiao Hu ◽  
Shunlin Hu ◽  
Xiaowen Liu ◽  
Xiaoquan Wang ◽  
...  

2009 ◽  
Vol 36 (9) ◽  
pp. 832 ◽  
Author(s):  
Jean Colcombet ◽  
Yves Mathieu ◽  
Remi Peyronnet ◽  
Nicolas Agier ◽  
Françoise Lelièvre ◽  
...  

Plants are constantly exposed to environmental biotic and abiotic stresses. Plants cells perceive these factors and trigger early responses followed by delayed and complex adaptation processes. Using cell suspensions of Arabidopsis thaliana (L.) as a cellular model, we investigated the role of plasma membrane anion channels in Reactive Oxygen Species (ROS) production and in cell death which occurs during non-host pathogen infection. Protoplasts derived from Arabidopsis suspension cells display two anion currents with characteristics very similar to those of the slow nitrate-permeable (S-type) and rapid sulfate-permeable (R-type) channels previously characterised in hypocotyl cells and other cell types. Using seven inhibitors, we showed that the R-type channel and ROS formation in cell cultures present similar pharmacological profiles. The efficiency of anion channel blockers to inhibit ROS production was independent of the nature of the triggering signal (osmotic stress or general elicitors of plant defence), indicating that the R-type channel represents a crossroad in the signalling pathways leading to ROS production. In a second step, we show that treatment with R-type channel blockers accelerates cell death triggered by the non-specific plant pathogen Xanthomonas campestris. Finally, we discuss the hypothesis that the R-type channel is involved in innate immune response allowing cell defence via antibacterial ROS production.


Sign in / Sign up

Export Citation Format

Share Document