scholarly journals Structural basis for PoxtA-mediated resistance to Phenicol and Oxazolidinone antibiotics

2021 ◽  
Author(s):  
Caillan Crowe-McAuliffe ◽  
Victoriia Murina ◽  
Marje Kasari ◽  
Hiraku Takada ◽  
Kathryn Jane Turnbull ◽  
...  

PoxtA and OptrA are ATP binding cassette (ABC) proteins of the F subtype (ABCF) that confer resistance to oxazolidinone, such as linezolid, and phenicol antibiotics, such as chloramphenicol. PoxtA/OptrA are often encoded on mobile genetic elements, facilitating their rapid spread amongst Gram-positive bacteria. These target protection proteins are thought to confer resistance by binding to the ribosome and dislodging the antibiotics from their binding sites. However, a structural basis for their mechanism of action has been lacking. Here we present cryo-electron microscopy structures of PoxtA in complex with the Enterococcus faecalis 70S ribosome at 2.9-3.1A, as well as the complete E. faecalis 70S ribosome at 2.2-2.5 A. The structures reveal that PoxtA binds within the ribosomal E-site with its antibiotic resistance domain (ARD) extending towards the peptidyltransferase center (PTC) on the large ribosomal subunit. At its closest point, the ARD of PoxtA is still located >15A from the linezolid and chloramphenicol binding sites, suggesting that drug release is elicited indirectly. Instead, we observe that the ARD of PoxtA perturbs the CCA-end of the P-site tRNA causing it to shift by ~4A out of the PTC, which correlates with a register shift of one amino acid for the attached nascent polypeptide chain. Given that linezolid and chloramphenicol are context-specific translation elongation inhibitors, we postulate that PoxtA/OptrA confer resistance to oxazolidinones and phenicols indirectly by perturbing the P-site tRNA and thereby altering the conformation of the attached nascent chain to disrupt the drug binding site.

2020 ◽  
Vol 117 (19) ◽  
pp. 10271-10277
Author(s):  
Ling Zhang ◽  
Ying-Hui Wang ◽  
Xing Zhang ◽  
Laura Lancaster ◽  
Jie Zhou ◽  
...  

Viomycin, an antibiotic that has been used to fight tuberculosis infections, is believed to block the translocation step of protein synthesis by inhibiting ribosomal subunit dissociation and trapping the ribosome in an intermediate state of intersubunit rotation. The mechanism by which viomycin stabilizes this state remains unexplained. To address this, we have determined cryo-EM and X-ray crystal structures of Escherichia coli 70S ribosome complexes trapped in a rotated state by viomycin. The 3.8-Å resolution cryo-EM structure reveals a ribosome trapped in the hybrid state with 8.6° intersubunit rotation and 5.3° rotation of the 30S subunit head domain, bearing a single P/E state transfer RNA (tRNA). We identify five different binding sites for viomycin, four of which have not been previously described. To resolve the details of their binding interactions, we solved the 3.1-Å crystal structure of a viomycin-bound ribosome complex, revealing that all five viomycins bind to ribosomal RNA. One of these (Vio1) corresponds to the single viomycin that was previously identified in a complex with a nonrotated classical-state ribosome. Three of the newly observed binding sites (Vio3, Vio4, and Vio5) are clustered at intersubunit bridges, consistent with the ability of viomycin to inhibit subunit dissociation. We propose that one or more of these same three viomycins induce intersubunit rotation by selectively binding the rotated state of the ribosome at dynamic elements of 16S and 23S rRNA, thus, blocking conformational changes associated with molecular movements that are required for translocation.


2006 ◽  
Vol 50 (11) ◽  
pp. 3816-3823 ◽  
Author(s):  
Rita Berisio ◽  
Natascia Corti ◽  
Peter Pfister ◽  
Ada Yonath ◽  
Erik C. Böttger

ABSTRACT Resistance to macrolides and ketolides occurs mainly via alterations in RNA moieties of the drug-binding site. Using an A2058G mutant of Mycobacterium smegmatis, additional telithromycin resistance was acquired via deletion of 15 residues from protein L22. Molecular modeling, based on the crystal structure of the large ribosomal subunit from Deinococcus radiodurans complexed with telithromycin, shows that the telithromycin carbamate group is located in the proximity of the tip of the L22 hairpin-loop, allowing for weak interactions between them. These weak interactions may become more important once the loss of A2058 interactions destabilizes drug binding, presumably resulting in a shift of the drug toward the other side of the tunnel, namely, to the vicinity of L22. Hence, the deletion of 15 residues from L22 may further destabilize telithromycin binding and confer telithromycin resistance. Such deletions may also lead to notable differences in the tunnel outline, as well as to an increase of its diameter to a size, allowing the progression of the nascent chain.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Michael Prattes ◽  
Irina Grishkovskaya ◽  
Victor-Valentin Hodirnau ◽  
Ingrid Rössler ◽  
Isabella Klein ◽  
...  

AbstractThe hexameric AAA-ATPase Drg1 is a key factor in eukaryotic ribosome biogenesis and initiates cytoplasmic maturation of the large ribosomal subunit by releasing the shuttling maturation factor Rlp24. Drg1 monomers contain two AAA-domains (D1 and D2) that act in a concerted manner. Rlp24 release is inhibited by the drug diazaborine which blocks ATP hydrolysis in D2. The mode of inhibition was unknown. Here we show the first cryo-EM structure of Drg1 revealing the inhibitory mechanism. Diazaborine forms a covalent bond to the 2′-OH of the nucleotide in D2, explaining its specificity for this site. As a consequence, the D2 domain is locked in a rigid, inactive state, stalling the whole Drg1 hexamer. Resistance mechanisms identified include abolished drug binding and altered positioning of the nucleotide. Our results suggest nucleotide-modifying compounds as potential novel inhibitors for AAA-ATPases.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Gregory M Martin ◽  
Balamurugan Kandasamy ◽  
Frank DiMaio ◽  
Craig Yoshioka ◽  
Show-Ling Shyng

Sulfonylureas are anti-diabetic medications that act by inhibiting pancreatic KATP channels composed of SUR1 and Kir6.2. The mechanism by which these drugs interact with and inhibit the channel has been extensively investigated, yet it remains unclear where the drug binding pocket resides. Here, we present a cryo-EM structure of a hamster SUR1/rat Kir6.2 channel bound to a high-affinity sulfonylurea drug glibenclamide and ATP at 3.63 Å resolution, which reveals unprecedented details of the ATP and glibenclamide binding sites. Importantly, the structure shows for the first time that glibenclamide is lodged in the transmembrane bundle of the SUR1-ABC core connected to the first nucleotide binding domain near the inner leaflet of the lipid bilayer. Mutation of residues predicted to interact with glibenclamide in our model led to reduced sensitivity to glibenclamide. Our structure provides novel mechanistic insights of how sulfonylureas and ATP interact with the KATP channel complex to inhibit channel activity.


2017 ◽  
Author(s):  
Gregory M. Martin ◽  
Balamurugan Kandasamy ◽  
Frank DiMaio ◽  
Craig Yoshioka ◽  
Show-Ling Shyng

AbstractSulfonylureas are anti-diabetic medications that act by inhibiting pancreatic KATP channels composed of SUR1 and Kir6.2. The mechanism by which these drugs interact with and inhibit the channel has been extensively investigated, yet it remains unclear where the drug binding pocket resides. Here, we present a cryo-EM structure of the channel bound to a high-affinity sulfonylurea drug glibenclamide and ATP at 3.8Å resolution, which reveals in unprecedented details of the ATP and glibenclamide binding sites. Importantly, the structure shows for the first time that glibenclamide is lodged in the transmembrane bundle of the SUR1-ABC core connected to the first nucleotide binding domain near the inner leaflet of the lipid bilayer. Mutation of residues predicted to interact with glibenclamide in our model led to reduced sensitivity to glibenclamide. Our structure provides novel mechanistic insights of how sulfonylureas and ATP interact with the KATP channel complex to inhibit channel activity.


2021 ◽  
Author(s):  
Kaitlyn Tsai ◽  
Vanja Stojković ◽  
D. John Lee ◽  
Iris D. Young ◽  
Teresa Szal ◽  
...  

The antibiotic linezolid, the first clinically approved member of the oxazolidinone class, inhibits translation of bacterial ribosomes by binding to the peptidyl transferase center. Recent work has demonstrated that linezolid does not inhibit peptide bond formation at all sequences but rather acts in a context-specific manner, namely when alanine occupies the penultimate position of the nascent chain. In this study, we determined that the second-generation oxazolidinone radezolid also induces stalling with alanine at the penultimate position. However, the molecular basis for context-specificity of these inhibitors has not been elucidated. In this study, we determined high-resolution cryo-EM structures of both linezolid and radezolid-stalled ribosome complexes. These structures reveal that the alanine side chain fits within a small hydrophobic crevice created by oxazolidinone, resulting in improved ribosome binding. Modification of the ribosome by the antibiotic resistance enzyme Cfr disrupts stalling by forcing the antibiotic to adopt a conformation that narrows the hydrophobic alanine pocket. Together, the structural and biochemical findings presented in this work provide molecular understanding of context-specific inhibition of translation by clinically important oxazolidinone antibiotics.


2020 ◽  
Author(s):  
Caillan Crowe-McAuliffe ◽  
Victoriia Murina ◽  
Kathryn Jane Turnbull ◽  
Marje Kasari ◽  
Merianne Mohamad ◽  
...  

AbstractTarget protection proteins bind to antibiotic targets and confer resistance to the host organism. One class of such proteins, termed antibiotic resistance (ARE) ATP binding cassette (ABC) proteins of the F-subtype (ARE ABCFs), are widely distributed throughout Gram-positive bacteria and bind the ribosome to alleviate translational inhibition by antibiotics that target the large ribosomal subunit. Using single-particle cryo-EM, we have solved the structure of ARE ABCF–ribosome complexes from three Gram-positive pathogens: Enterococcus faecalis LsaA, Staphylococcus haemolyticus VgaALC and Listeria monocytogenes VgaL. Supported by extensive mutagenesis analysis, these structures enable a comparative approach to understanding how these proteins mediate antibiotic resistance on the ribosome. We present evidence of mechanistically diverse allosteric relays converging on a few peptidyltransferase center (PTC) nucleotides, and propose a general model of antibiotic resistance mediated by these ARE ABCFs.


2018 ◽  
Author(s):  
Mary E. O’Sullivan ◽  
Frédéric Poitevin ◽  
Raymond G. Sierra ◽  
Cornelius Gati ◽  
E. Han Dao ◽  
...  

ABSTRACTThe bacterial 30S ribosomal subunit is a primary antibiotic target. Despite decades of discovery, the mechanisms by which antibiotic binding induces ribosomal dysfunction are not fully understood. Ambient temperature crystallographic techniques allow more biologically relevant investigation of how local antibiotic binding site interactions trigger global subunit rearrangements that perturb protein synthesis. Here, the structural effects of 2-deoxystreptamine (paromomycin and sisomicin), a novel sisomicin derivative, N1-methyl sulfonyl sisomicin (N1MS) and the non-deoxystreptamine (streptomycin) aminoglycosides on the ribosome at ambient and cryogenic temperatures were examined. Comparative studies led to three main observations. First, individual aminoglycoside-ribosome interactions in the decoding center were similar for cryogenic vs ambient temperature structures. Second, analysis of a highly conserved GGAA tetraloop of h45 revealed aminoglycoside-specific conformational changes, which are affected by temperature only for N1MS. We report the h44/h45 interface in varying states, that is, engaged, disengaged and in equilibrium. Thirdly, we observe aminoglycoside-induced effects on 30S domain closure, including a novel intermediary closure state, which is also sensitive to temperature. Analysis of three ambient and five cryogenic crystallography datasets reveal a correlation between h44/h45 engagement and domain closure. These observations illustrate the role of ambient temperature crystallography in identifying dynamic mechanisms of ribosomal dysfunction induced by local drug-binding site interactions. Together these data identify tertiary ribosomal structural changes induced by aminoglycoside binding that provides functional insight and targets for drug design.


2020 ◽  
Author(s):  
Mohamed Fadlalla

<p>SARS CoV 2 has spread worldwide and caused a major outbreak of coronavirus disease 2019 (COVID-19). To date, no licensed drug or a vaccine is available against COVID19.</p><p>Starting from all of the resolved SARS CoV2 crystal structures, this study aims to find inhibitors for all of the SARS CoV2 proteins. To achieve this, I used PocketMatch to test the similarity of approved drugs binding sites against all of the binding sites found on SARS CoV 2 proteins. After that docking was used to confirm the results.</p><p>I found drugs that inhibit the main protease, Nsp12 and Nsp3. The discovered drugs are either in clinical trials (Sildenafil, Lopinavir, Ritonavir) or have in vitro antiviral activity (Nelfinavir, Indinavir, Amprenavir, depiqulinum , Gemcitabine, Raltitrexed, Aprepitant, montelukast, Ouabain, Raloxifene) whether against SARS CoV 2 or other viruses. In addition to this, further analysis of pockets revealed a steroidal pocket that might open the door to hypotheses on why the mortality of men is higher than women.</p><p>Many of the in silico repurposing studies test binding of the compound to the target using docking. The significance of this study adds to the similarity between the drug binding site and the target binding site. This takes into consideration the dynamic behaviour of the pocket after ligand binding.</p><div><br></div>


Sign in / Sign up

Export Citation Format

Share Document