scholarly journals DiMeLo-seq: a long-read, single-molecule method for mapping protein-DNA interactions genome-wide

2021 ◽  
Author(s):  
Nicolas Altemose ◽  
Annie Maslan ◽  
Owen K Smith ◽  
Kousik Sundararajan ◽  
Rachel R Brown ◽  
...  

Molecular studies of genome regulation often rely on the ability to map where specific proteins interact with genomic DNA. Existing techniques for mapping protein-DNA interactions genome-wide rely on DNA amplification methods followed by sequencing with short reads, which dissociates joint binding information at neighboring sites, removes endogenous DNA methylation information, and precludes the ability to reliably map interactions in repetitive regions of the genome. To address these limitations, we created a new protein-DNA mapping method, called Directed Methylation with Long-read sequencing (DiMeLo-seq), which methylates DNA near each target protein's DNA binding site in situ, then leverages the ability to distinguish methylated and unmethylated bases on long, native DNA molecules using long-read, single-molecule sequencing technologies. We demonstrate the optimization and utility of this method by mapping the interaction sites of a variety of different proteins and histone modifications across the human genome, achieving a single-molecule binding site resolution of less than 200 bp. Furthermore, we mapped the positions of the centromeric histone H3 variant CENP-A in repetitive regions that are unmappable with short reads, while simultaneously analyzing endogenous CpG methylation and joint binding events on single molecules. DiMeLo-seq is a versatile method that can provide multimodal and truly genome-wide information for investigating protein-DNA interactions.

2021 ◽  
Author(s):  
Nicolas Altemose ◽  
Annie Maslan ◽  
Owen Smith ◽  
Kousik Sundararajan ◽  
Rachel Brown ◽  
...  

Directed Methylation and Long-read sequencing (DiMeLo-seq) is a powerful method to map protein-DNA interactions at a single-molecule level across the genome (including repetitive regions). It can be multiplexed to analyze multiple base modifications at once (e.g. endogenous CpG methylation and directed pA-Hia5 adenine methylation). Additionally, PCR amplification is not necessary for this protocol, which means that sequencing readout is proportional to protein-DNA interaction frequency. Finally, DiMeLo-seq can be used to map multiple protein interactions across a long single molecule.


2021 ◽  
Author(s):  
Chitvan Mittal ◽  
Matthew J. Rossi ◽  
B. Franklin Pugh

AbstractChEC-seq is a method used to identify protein-DNA interactions across a genome. It involves fusing micrococcal nuclease (MNase) to a protein of interest. In principle, specific genome-wide interactions of the fusion protein with chromatin result in local DNA cleavages that can be mapped by DNA sequencing. ChEC-seq has been used to draw conclusions about broad gene-specificities of certain protein-DNA interactions. In particular, the transcriptional regulators SAGA, TFIID, and Mediator are reported to generally occupy the promoter/UAS of genes transcribed by RNA polymerase II in yeast. Here we compare published yeast ChEC-seq data performed with a variety of protein fusions across essentially all genes, and find high similarities with negative controls. We conclude that ChEC-seq patterning for SAGA, TFIID, and Mediator differ little from background at most promoter regions, and thus cannot be used to draw conclusions about broad gene specificity of these factors.


2017 ◽  
Author(s):  
Mircea Cretu Stancu ◽  
Markus J. van Roosmalen ◽  
Ivo Renkens ◽  
Marleen Nieboer ◽  
Sjors Middelkamp ◽  
...  

AbstractStructural genomic variants form a common type of genetic alteration underlying human genetic disease and phenotypic variation. Despite major improvements in genome sequencing technology and data analysis, the detection of structural variants still poses challenges, particularly when variants are of high complexity. Emerging long-read single-molecule sequencing technologies provide new opportunities for detection of structural variants. Here, we demonstrate sequencing of the genomes of two patients with congenital abnormalities using the ONT MinION at 11x and 16x mean coverage, respectively. We developed a bioinformatic pipeline - NanoSV - to efficiently map genomic structural variants (SVs) from the long-read data. We demonstrate that the nanopore data are superior to corresponding short-read data with regard to detection of de novo rearrangements originating from complex chromothripsis events in the patients. Additionally, genome-wide surveillance of SVs, revealed 3,253 (33%) novel variants that were missed in short-read data of the same sample, the majority of which are duplications < 200bp in size. Long sequencing reads enabled efficient phasing of genetic variations, allowing the construction of genome-wide maps of phased SVs and SNVs. We employed read-based phasing to show that all de novo chromothripsis breakpoints occurred on paternal chromosomes and we resolved the long-range structure of the chromothripsis. This work demonstrates the value of long-read sequencing for screening whole genomes of patients for complex structural variants.


2007 ◽  
Vol 2 (4) ◽  
pp. 185-201 ◽  
Author(s):  
Ji Hoon Kim ◽  
Venkat Ram Dukkipati ◽  
Stella W. Pang ◽  
Ronald G. Larson

Molecules ◽  
2019 ◽  
Vol 24 (3) ◽  
pp. 491 ◽  
Author(s):  
Gurleen Kaur ◽  
Jacob Lewis ◽  
Antoine van Oijen

The ability to watch single molecules of DNA has revolutionised how we study biological transactions concerning nucleic acids. Many strategies have been developed to manipulate DNA molecules to investigate mechanical properties, dynamics and protein–DNA interactions. Imaging methods using small molecules and protein-based probes to visualise DNA have propelled our understanding of complex biochemical reactions involving DNA. This review focuses on summarising some of the methodological developments made to visualise individual DNA molecules and discusses how these probes have been used in single-molecule biophysical assays.


2010 ◽  
Vol 98 (3) ◽  
pp. 74a-75a
Author(s):  
Nesha May O. Andoy ◽  
Susanta Sarkar ◽  
Peng Chen

Sign in / Sign up

Export Citation Format

Share Document