structural genomic
Recently Published Documents


TOTAL DOCUMENTS

142
(FIVE YEARS 60)

H-INDEX

23
(FIVE YEARS 5)

PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0259197
Author(s):  
Hamid Bolouri ◽  
Rhonda Ries ◽  
Laura Pardo ◽  
Tiffany Hylkema ◽  
Wanding Zhou ◽  
...  

Infant Acute Myeloid Leukemia (AML) is a poorly-addressed, heterogeneous malignancy distinguished by surprisingly few mutations per patient but accompanied by myriad age-specific translocations. These characteristics make treatment of infant AML challenging. While infant AML is a relatively rare disease, it has enormous impact on families, and in terms of life-years-lost and life limiting morbidities. To better understand the mechanisms that drive infant AML, we performed integrative analyses of genome-wide mRNA, miRNA, and DNA-methylation data in diagnosis-stage patient samples. Here, we report the activation of an onco-fetal B-cell developmental gene regulatory network in infant AML. AML in infants is genomically distinct from AML in older children/adults in that it has more structural genomic aberrations and fewer mutations. Differential expression analysis of ~1500 pediatric AML samples revealed a large number of infant-specific genes, many of which are associated with B cell development and function. 18 of these genes form a well-studied B-cell gene regulatory network that includes the epigenetic regulators BRD4 and POU2AF1, and their onco-fetal targets LIN28B and IGF2BP3. All four genes are hypo-methylated in infant AML. Moreover, micro-RNA Let7a-2 is expressed in a mutually exclusive manner with its target and regulator LIN28B. These findings suggest infant AML may respond to bromodomain inhibitors and immune therapies targeting CD19, CD20, CD22, and CD79A.


Genetics ◽  
2021 ◽  
Author(s):  
Lydia R Heasley ◽  
Juan Lucas Argueso

Abstract The budding yeast Saccharomyces cerevisiae has been extensively characterized for many decades and is a critical resource for the study of numerous facets of eukaryotic biology. Recently, whole genome sequence analysis of over 1000 natural isolates of S. cerevisiae has provided critical insights into the evolutionary landscape of this species by revealing a population structure comprised of numerous genomically diverse lineages. These survey-level analyses have been largely devoid of structural genomic information, mainly because short read sequencing is not suitable for detailed characterization of genomic architecture. Consequently, we still lack a complete perspective of the genomic variation the exists within the species. Single molecule long read sequencing technologies, such as Oxford Nanopore and PacBio, provide sequencing-based approaches with which to rigorously define the structure of a genome, and have empowered yeast geneticists to explore this poorly described realm of eukaryotic genomics. Here, we present the comprehensive genomic structural analysis of a wild diploid isolate of S. cerevisiae, YJM311. We used long read sequence analysis to construct a haplotype-phased, telomere-to-telomere length assembly of the YJM311 genome and characterized the structural variations (SVs) therein. We discovered that the genome of YJM311 contains significant intragenomic structural variation, some of which imparts notable consequences to the genomic stability and developmental biology of the strain. Collectively, we outline a new methodology for creating accurate haplotype-phased genome assemblies and highlight how such genomic analyses can define the structural architectures of S. cerevisiae isolates. It is our hope that continued structural characterization of S. cerevisiae genomes, such as we have reported here for YJM311, will comprehensively advance our understanding of eukaryotic genome structure-function relationships, structural genomic diversity, and evolution.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Qihua Liang ◽  
Stefano Lonardi

Abstract Background The pan-genome of a species is the union of the genes and non-coding sequences present in all individuals (cultivar, accessions, or strains) within that species. Results Here we introduce PGV, a reference-agnostic representation of the pan-genome of a species based on the notion of consensus ordering. Our experimental results demonstrate that PGV enables an intuitive, effective and interactive visualization of a pan-genome by providing a genome browser that can elucidate complex structural genomic variations. Conclusions The PGV software can be installed via conda or downloaded from https://github.com/ucrbioinfo/PGV. The companion PGV browser at http://pgv.cs.ucr.edu can be tested using example bed tracks available from the GitHub page.


Coronaviruses ◽  
2021 ◽  
Vol 02 ◽  
Author(s):  
Chellapandi P ◽  
Saranya S

: Coronavirus disease (COVID-19) pandemic is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a new coronavirus isolated from Wuhan, China. It is a global health emergency, and there is no effective antiviral therapeutics available to date. Continuous structural genomic insights of SARS-CoV-2 proteins provide a warranty for the development of rational-based antivirals. Nevertheless, a structure-based drug candidate with multiple therapeutic actions would be a practical choice of medication in the treatment of severe COVID-19 patients. Cordycepin from medicinal fungi (Cordyceps spp.) and its nucleoside analogs targeting viral RNA-dependent RNA polymerase and human RNase L have potent antiviral activity against various human viruses with additional immunomodulatory and anti-inflammatory effects. Anti-inflammation treatment is of pivotal importance and should be timely tailored to the individual patient along with antivirals. Our perspective on the combined antiviral and anti-inflammatory effects of cordycepin and its analogs suggests them as new therapeutics in the treatment of systemic COVID-19 infection.


2021 ◽  
Author(s):  
Lydia R. Heasley ◽  
Juan Lucas Argueso

The budding yeast Saccharomyces cerevisiae has been extensively characterized for many decades and is a critical resource for the study of numerous facets of eukaryotic biology. Recently, the analysis of whole genome sequencing data from over 1000 natural isolates of S. cerevisiae has provided critical insights into the evolutionary landscape of this species by revealing a population structure comprised of numerous genomically diverse lineages. These survey-level analyses have been largely devoid of structural genomic information, mainly because short read sequencing is not suitable for detailed characterization of genomic architecture. Consequently, we still lack a complete perspective of the genomic variation the exists within the species. Single molecule long read sequencing technologies, such as Oxford Nanopore and PacBio, provide sequencing-based approaches with which to rigorously define the structure of a genome, and have empowered yeast geneticists to explore this poorly described realm of eukaryotic genomics. Here, we present the comprehensive genomic structural analysis of a pathogenic isolate of S. cerevisiae, YJM311. We used long read sequence analysis to construct a haplotype-phased, telomere-to-telomere length assembly of the YJM311 diploid genome and characterized the structural variations (SVs) therein. We discovered that the genome of YJM311 contains significant intragenomic structural variation, some of which imparts notable consequences to the genomic stability and developmental biology of the strain. Collectively, we outline a new methodology for creating accurate haplotype-phased genome assemblies and highlight how such genomic analyses can define the structural architectures of S. cerevisiae isolates. It is our hope that through continued structural characterization of S. cerevisiae genomes, such as we have reported here for YJM311, we will comprehensively advance our understanding of eukaryotic genome structure-function relationships, structural diversity, and evolution.


2021 ◽  
Vol 9 ◽  
Author(s):  
Orsolya Nagy ◽  
Judit Kárteszi ◽  
Beatrix Elmont ◽  
Anikó Ujfalusi

Pathogenic variants of FOXP2 gene were identified first as a monogenic cause of childhood apraxia of speech (CAS), a complex disease that is associated with an impairment of the precision and consistency of movements underlying speech, due to deficits in speech motor planning and programming. FOXP2 variants are heterogenous; single nucleotide variants and small insertions/deletions, intragenic and large-scale deletions, as well as disruptions by structural chromosomal aberrations and uniparental disomy of chromosome 7 are the most common types of mutations. FOXP2-related speech and language disorders can be classified as “FOXP2-only,” wherein intragenic mutations result in haploinsufficiency of the FOXP2 gene, or “FOXP2-plus” generated by structural genomic variants (i.e., translocation, microdeletion, etc.) and having more likely developmental and behavioral disturbances adjacent to speech and language impairment. The additional phenotypes are usually related to the disruption/deletion of multiple genes neighboring FOXP2 in the affected chromosomal region. We report the clinical and genetic findings in a family with four affected individuals having expressive speech impairment as the dominant symptom and additional mild dysmorphic features in three. A 7.87 Mb interstitial deletion of the 7q31.1q31.31 region was revealed by whole genome diagnostic microarray analysis in the proband. The FOXP2 gene deletion was confirmed by multiplex ligation-dependent probe amplification (MLPA), and all family members were screened by this targeted method. The FOXP2 deletion was detected in the mother and two siblings of the proband using MLPA. Higher resolution microarray was performed in all the affected individuals to refine the extent and breakpoints of the 7q31 deletion and to exclude other pathogenic copy number variants. To the best of our knowledge, there are only two family-studies reported to date with interstitial 7q31 deletion and showing the core phenotype of FOXP2 haploinsufficiency. Our study may contribute to a better understanding of the behavioral phenotype of FOXP2 disruptions and aid in the identification of such patients. We illustrate the importance of a targeted MLPA analysis suitable for the detection of FOXP2 deletion in selected cases with a specific phenotype of expressive speech disorder. The “phenotype first” and targeted diagnostic strategy can improve the diagnostic yield of speech disorders in the routine clinical practice.


2021 ◽  
Vol 10 (13) ◽  
pp. 2801
Author(s):  
Chen-Xuan Wei ◽  
Michael Francis Burrow ◽  
Michael George Botelho ◽  
W. Keung Leung

Studies on small quantity, highly complex protein samples, such as salivary pellicle, have been enabled by recent major technological and analytical breakthroughs. Advances in mass spectrometry-based computational proteomics such as Multidimensional Protein Identification Technology have allowed precise identification and quantification of complex protein samples on a proteome-wide scale, which has enabled the determination of corresponding genes and cellular functions at the protein level. The latter was achieved via protein-protein interaction mapping with Gene Ontology annotation. In recent years, the application of these technologies has broken various barriers in small-quantity-complex-protein research such as salivary pellicle. This review provides a concise summary of contemporary proteomic techniques contributing to (1) increased complex protein (up to hundreds) identification using minute sample sizes (µg level), (2) precise protein quantification by advanced stable isotope labelling or label-free approaches and (3) the emerging concepts and techniques regarding computational integration, such as the Gene Ontology Consortium and protein-protein interaction mapping. The latter integrates the structural, genomic, and biological context of proteins and genes to predict protein interactions and functional connections in a given biological context. The same technological breakthroughs and computational integration concepts can also be applied to other low-volume oral protein complexes such as gingival crevicular or peri-implant sulcular fluids.


2021 ◽  
Vol 11 (6) ◽  
pp. 812
Author(s):  
Markéta Pokorná ◽  
Michael Hudec ◽  
Iva Juříčková ◽  
Michael Vácha ◽  
Zdeňka Polívková ◽  
...  

Glioblastoma multiforme (GBM) is a primary brain cancer of poor prognosis, with existing treatments remaining essentially palliative. Current GBM therapy fails due to rapid reappearance of the heterogeneous neoplasm, with models suggesting that the recurrent growth is from treatment-resistant glioblastoma stem-like cells (GSCs). Whether GSCs depend on survival/proliferative cues from their surrounding microenvironmental niche, particularly surrounding the leading edge after treatment remains unknown. Simulating human GBM in the laboratory relies on representative cell lines and xenograft models for translational medicine. Due to U87MG source discrepancy and differential proliferation responses to retinoic acid treatment, this study highlights the challenges faced by laboratory scientists working with this representative GBM cell line. Investigating the response to all trans-retinoic acid (ATRA) revealed its sequestering of the prominin-1 stem cell marker. ICAM-1 universally present throughout U87MG was enhanced by ATRA, of interest for chemotherapy targeting studies. ATRA triggered diverse expression patterns of long non-coding RNAs PARTICLE and GAS5 in the leading edge and established monolayer growth zone microenvironment. Karyotyping confirmed the female origin of U87MG sourced from Europe. Passaging U87MG revealed the presence of chromosomal anomalies reflective of structural genomic alterations in this glioblastoma cell line. All evidence considered, this study exposes further phenotypic nuances of U87MG which may belie researchers seeking data contributing towards the elusive cure for GBM.


Author(s):  
Vivien J. Chebii ◽  
Emmanuel A. Mpolya ◽  
Samuel O. Oyola ◽  
Antoinette Kotze ◽  
Jean-Baka Domelevo Entfellner ◽  
...  

AbstractThe Nubian ibex (Capra nubiana) is a wild goat species that inhabits the Sahara and Arabian deserts and is adapted to extreme ambient temperatures, intense solar radiation, and scarcity of food and water resources. To investigate desert adaptation, we explored the possible role of copy number variations (CNVs) in the evolution of Capra species with a specific focus on the environment of Capra nubiana. CNVs are structural genomic variations that have been implicated in phenotypic differences between species and could play a role in species adaptation. CNVs were inferred from Capra nubiana sequence data relative to the domestic goat reference genome using read-depth approach. We identified 191 CNVs overlapping with protein-coding genes mainly involved in biological processes such as innate immune response, xenobiotic metabolisms, and energy metabolisms. We found copy number variable genes involved in defense response to viral infections (Cluster of Differentiation 48, UL16 binding protein 3, Natural Killer Group 2D ligand 1-like, and Interferon-induced transmembrane protein 3), possibly suggesting their roles in Nubian ibex adaptations to viral infections. Additionally, we found copy number variable xenobiotic metabolism genes (carboxylesterase 1, Cytochrome P450 2D6, Glutathione S-transferase Mu 4, and UDP Glucuronosyltransferase-2B7), which are probably an adaptation of Nubian ibex to desert diets that are rich in plant secondary metabolites. Collectively, this study's results advance our understanding of CNVs and their possible roles in the adaptation of Nubian ibex to its environment. The copy number variable genes identified in Nubian ibex could be considered as subjects for further functional characterizations.


2021 ◽  
Author(s):  
Tyler Funnell ◽  
Ciara H. O'Flanagan ◽  
Marc J. Williams ◽  
Andrew McPherson ◽  
Steven McKinney ◽  
...  

Structural genome alterations are determinants of cancer ontogeny and therapeutic response. While bulk genome sequencing has enabled delineation of structural variation (SV) mutational processes which generate patterns of DNA damage, we have little understanding of how these processes lead to cell-to-cell variations which underlie selection and rates of accrual of different genomic lesions. We analysed 309 high grade serous ovarian and triple negative breast cancer genomes to determine their mutational processes, selecting 22 from which we sequenced >22,000 single cell whole genomes across a spectrum of mutational processes. We show that distinct patterns of cell-to-cell variation in aneuploidy, copy number alteration (CNA) and segment length occur in homologous recombination deficiency (HRD) and fold-back inversion (FBI) phenotypes. Widespread aneuploidy through induction of HRD through BRCA1 and BRCA2 inactivation was mirrored by continuous whole genome duplication in HRD tumours, contrasted with early ploidy fixation in FBI. FBI tumours exhibited copy number distributions skewed towards gains, widespread clone-specific variation in amplitude of high-level amplifications, often impacting oncogenes, and break-point variability consistent with progressive genomic diversification, which we termed serriform structural variation (SSV). SSVs were consistent with a CNA-based molecular clock reflecting a continual and distributed process across clones within tumours. These observations reveal previously obscured genome plasticity and evolutionary properties with implications for cancer evolution, therapeutic targeting and response.


Sign in / Sign up

Export Citation Format

Share Document