scholarly journals Unconventional tonicity-regulated nuclear trafficking of NFAT5 mediated by KPNB1, XPOT and RUVBL2

2021 ◽  
Author(s):  
Chris Y. Cheung ◽  
Ting-Ting Huang ◽  
Ning Chow ◽  
Shuqi Zhang ◽  
Yanxiang Zhao ◽  
...  

NFAT5 is the only known mammalian tonicity-responsive transcription factor functionally implicated in diverse physiological and pathological processes. NFAT5 activity is tightly regulated by extracellular tonicity but the underlying mechanisms remain elusive. We demonstrated that NFAT5 enters the nucleus via the nuclear pore complex. We also found that NFAT5 utilizes a non-canonical nuclear localization signal (NFAT5-NLS) for nuclear imports. siRNA screening revealed that karyopherin beta-1 (KPNB1) drives nuclear import of NFAT5 via directly interacting with NFAT5-NLS. Proteomics analysis and siRNA screening further revealed that nuclear export of NFAT5 under hypotonicity is mediated by Exportin-T, and that it requires RuvB-Like AAA type ATPase 2 (RUVBL2) as an indispensable chaperone. Our findings have identified KPNB1 and RUVBL2 as key molecules responsible for the unconventional tonicity-regulated nucleocytoplasmic shuttling of NFAT5. These findings offer an opportunity for developing novel NFAT5 targeting strategies that are potentially useful for the treatment of diseases associated with NFAT5 dysregulation.

1998 ◽  
Vol 140 (3) ◽  
pp. 499-509 ◽  
Author(s):  
Michael J. Matunis ◽  
Jian Wu ◽  
Günter Blobel

RanGAP1 is the GTPase-activating protein for Ran, a small ras-like GTPase involved in regulating nucleocytoplasmic transport. In vertebrates, RanGAP1 is present in two forms: one that is cytoplasmic, and another that is concentrated at the cytoplasmic fibers of nuclear pore complexes (NPCs). The NPC-associated form of RanGAP1 is covalently modified by the small ubiquitin-like protein, SUMO-1, and we have recently proposed that SUMO-1 modification functions to target RanGAP1 to the NPC. Here, we identify the domain of RanGAP1 that specifies SUMO-1 modification and demonstrate that mutations in this domain that inhibit modification also inhibit targeting to the NPC. Targeting of a heterologous protein to the NPC depended on determinants specifying SUMO-1 modification and also on additional determinants in the COOH-terminal domain of RanGAP1. SUMO-1 modification and these additional determinants were found to specify interaction between the COOH-terminal domain of RanGAP1 and a region of the nucleoporin, Nup358, between Ran-binding domains three and four. Together, these findings indicate that SUMO-1 modification targets RanGAP1 to the NPC by exposing, or creating, a Nup358 binding site in the COOH-terminal domain of RanGAP1. Surprisingly, the COOH-terminal domain of RanGAP1 was also found to harbor a nuclear localization signal. This nuclear localization signal, and the presence of nine leucine-rich nuclear export signal motifs, suggests that RanGAP1 may shuttle between the nucleus and the cytoplasm.


2005 ◽  
Vol 393 (1) ◽  
pp. 245-254 ◽  
Author(s):  
Catherine Martel ◽  
Paolo Macchi ◽  
Luc Furic ◽  
Michael A. Kiebler ◽  
Luc Desgroseillers

Mammalian Stau1 (Staufen1), a modular protein composed of several dsRBDs (double-stranded RNA-binding domains), is probably involved in mRNA localization. Although Stau1 is mostly described in association with the rough endoplasmic reticulum and ribosomes in the cytoplasm, recent studies suggest that it may transit through the nucleus/nucleolus. Using a sensitive yeast import assay, we show that Stau1 is actively imported into the nucleus through a newly identified bipartite nuclear localization signal. As in yeast, the bipartite nuclear localization signal is necessary for Stau1 nuclear import in mammalian cells. It is also required for Stau1 nucleolar trafficking. However, Stau1 nuclear transit seems to be regulated by mechanisms that involve cytoplasmic retention and/or facilitated nuclear export. Cytoplasmic retention is mainly achieved through the action of dsRBD3, with dsRBD2 playing a supporting role in this function. Similarly, dsRBD3, but not its RNA-binding activity, is critical for Stau1 nucleolar trafficking. The function of dsRBD3 is strengthened or stabilized by the presence of dsRBD4 but prevented by the interdomain between dsRBD2 and dsRBD3. Altogether, these results suggest that Stau1 nuclear trafficking is a highly regulated process involving several determinants. The presence of Stau1 in the nucleus/nucleolus suggests that it may be involved in ribonucleoprotein formation in the nucleus and/or in other nuclear functions not necessarily related to mRNA transport.


1995 ◽  
Vol 108 (4) ◽  
pp. 1325-1332 ◽  
Author(s):  
E. Duverger ◽  
C. Pellerin-Mendes ◽  
R. Mayer ◽  
A.C. Roche ◽  
M. Monsigny

The nuclear import of many proteins depends on a short peptide sequence called the nuclear localization signal. However, glycosylated proteins, which lack such a nuclear localization signal, upon their injection into the cytosol by electroporation, enter the nucleus in a sugar-dependent manner. This paper brings new insights on the mechanism of this process, based on a study of neoglycoprotein nuclear uptake by digitonin-permeabilized cells. The nuclear import of neoglycoproteins is energy dependent: it does not occur when cells are maintained at 4 degrees C or when cells are ATP-depleted by treatment with apyrase. The nuclear import of neoglycoproteins occurs through the nuclear pore: it is inhibited by preincubation of cells with wheat germ agglutinin, a lectin which binds the nuclear pore glycoproteins and blocks the translocation step of nuclear localization signal bearing proteins through the nuclear pore. Furthermore, the nuclear import of neoglycoproteins does not use the pathway of nuclear localization signal bearing proteins: nuclear import of nuclear localization signal bearing proteins depends on cytosolic factors and is inhibited by treatment of cells with N-ethylmaleimide, while the nuclear import of neoglycoproteins neither requires added cytosolic factors nor is sensitive to alkylation by N-ethylmaleimide. In addition, upon incubation in the presence of a large excess of nuclear localization signal bearing protein, the nuclear import of neoglycoproteins is not inhibited.


2021 ◽  
Author(s):  
Liyan Cao ◽  
Fang Fu ◽  
Jianfei Chen ◽  
Hongyan Shi ◽  
Xin Zhang ◽  
...  

Porcine parvovirus (PPV) NS1, the major nonstructural protein of this virus, plays an important role in PPV replication. We show, for the first time, that NS1 dynamically shuttles between the nucleus and cytoplasm, although its subcellular localization is predominantly nuclear. NS1 contains two nuclear export signals (NESs) at amino acids 283–291 (designated NES2) and 602–608 (designated NES1). NES1 and NES2 are both functional and transferable NESs, and their nuclear export activity is blocked by leptomycin B (LMB), suggesting that the export of NS1 from the nucleus is dependent upon the chromosome region maintenance 1 (CRM1) pathway. Deletion and site-directed mutational analyses showed that NS1 contains a bipartite nuclear localization signal (NLS) at amino acids 256–274. Coimmunoprecipitation assays showed that NS1 interacts with importins α5 and α7 through its NLS. The overexpression of CRM1, importins α5 and α7 significantly promoted PPV replication, whereas the inhibition of CRM1 and importin α/β-mediated transport by specific inhibitors (LMB, importazole and ivermectin) clearly blocked PPV replication. The mutant viruses of delete NESs or NLS motif of the NS1 by using reverse genetics could not be rescued, suggesting that NESs and NLS are essential for PPV replication. Collectively, these findings suggest that NS1 shuttles between the nucleus and cytoplasm, mediated by its functional NESs and NLS, via the CRM1-dependent nuclear export pathway and the importin α/β-mediated nuclear import pathway, and PPV proliferation was inhibited if blocking NS1 nuclear import or export. Importance PPV replicates in the nucleus, and the nuclear envelope is a barrier to its entry into and egress from the nucleus. PPV NS1 is a nucleus-targeting protein that is important for viral DNA replication. Because the NS1 molecule is large (> 50 kDa), it cannot pass through the nuclear pore complex by diffusion alone, and requires specific transport receptors to permit its nucleocytoplasmic shuttling. In this study, the two functional NESs in the NS1 protein were identified, and its dependence on the CRM1 pathway for nuclear export demonstrated. The nuclear import of NS1 utilizes importins α5 and α7 in the importin α/β nuclear import pathway.


1998 ◽  
Vol 111 (13) ◽  
pp. 1823-1830 ◽  
Author(s):  
D. Schmalz ◽  
F. Hucho ◽  
K. Buchner

Protein kinase C does not have any known nuclear localization signal but, nevertheless, is redistributed from the cytoplasm to the nucleus upon various stimuli. In NIH 3T3 fibroblasts stimulation with phorbol ester leads to a translocation of protein kinase C alpha to the plasma membrane and into the cell nucleus. We compared the mechanism of protein kinase C alpha's transport into the nucleus with the transport mechanism of a protein with a classical nuclear localization signal at several steps. To this end, we co-microinjected fluorescently labeled bovine serum albumin to which a nuclear localization signal peptide was coupled, together with substances interfering with conventional nuclear protein import. Thereafter, the distribution of both the nuclear localization signal-bearing reporter protein and protein kinase C alpha was analyzed in the same cells. We can show that, in contrast to the nuclear localization signal-dependent transport, the phorbol ester-induced transport of protein kinase C alpha is not affected by microinjection of antibodies against the nuclear import factor p97/importin/karyopherin beta or microinjection of non-hydrolyzable GTP-analogs. This suggests that nuclear import of protein kinase C alpha is independent of p97/importin/karyopherin beta and independent of GTP. At the nuclear pore there are differences between the mechanisms too, since nuclear transport of protein kinase C alpha cannot be inhibited by wheat germ agglutinin or an antibody against nuclear pore complex proteins. Together these findings demonstrate that the nuclear import of protein kinase C alpha occurs by a mechanism distinct from the one used by classical nuclear localization signal-bearing proteins at several stages.


1998 ◽  
Vol 18 (3) ◽  
pp. 1449-1458 ◽  
Author(s):  
Ray Truant ◽  
Robert A. Fridell ◽  
R. Edward Benson ◽  
Hal Bogerd ◽  
Bryan R. Cullen

ABSTRACT The nuclear import of proteins bearing a basic nuclear localization signal (NLS) is dependent on karyopherin α/importin α, which acts as the NLS receptor, and karyopherin β1/importin β, which binds karyopherin α and mediates the nuclear import of the resultant ternary complex. Recently, a second nuclear import pathway that allows the rapid reentry into the nucleus of proteins that participate in the nuclear export of mature mRNAs has been identified. In mammalian cells, a single NLS specific for this alternate pathway, the M9 NLS of heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1), has been described. The M9 NLS binds a transport factor related to karyopherin β1, termed karyopherin β2 or transportin, and does not require a karyopherin α-like adapter protein. A yeast homolog of karyopherin β2, termed Kap104p, has also been described and proposed to play a role in the nuclear import of a yeast hnRNP-like protein termed Nab2p. Here, we define a Nab2p sequence that binds to Kap104p and that functions as an NLS in both human and yeast cells despite lacking any evident similarity to basic or M9 NLSs. Using an in vitro nuclear import assay, we demonstrate that Kap104p can direct the import into isolated human cell nuclei of a substrate containing a wild-type, but not a defective mutant, Nab2p NLS. In contrast, other NLSs, including the M9 NLS, could not function as substrates for Kap104p. Surprisingly, this in vitro assay also revealed that human karyopherin β1, but not the Kap104p homolog karyopherin β2, could direct the efficient nuclear import of a Nab2p NLS substrate in vitro in the absence of karyopherin α. These data therefore identify a novel NLS sequence, active in both yeast and mammalian cells, that is functionally distinct from both basic and M9 NLS sequences.


2006 ◽  
Vol 80 (20) ◽  
pp. 10274-10280 ◽  
Author(s):  
Peter Lischka ◽  
Claudia Rauh ◽  
Regina Mueller ◽  
Thomas Stamminger

ABSTRACT Previous studies defined pUL84 of human cytomegalovirus as an essential regulatory protein with nuclear localization that was proposed to act during initiation of viral-DNA synthesis. Recently, we demonstrated that a complex domain of 282 amino acids within pUL84 functions as a nonconventional nuclear localization signal. Sequence inspection of this domain revealed the presence of motifs with homology to leucine-rich nuclear export signals. Here, we report the identification of two functional, autonomous nuclear export signals and show that pUL84 acts as a CRM-1-dependent nucleocytoplasmic shuttling protein. This suggests an unexpected cytoplasmic role for this essential viral regulatory protein.


1997 ◽  
Vol 137 (4) ◽  
pp. 797-811 ◽  
Author(s):  
M. Kathryn Iovine ◽  
Susan R. Wente

During nuclear import, cytosolic transport factors move through the nuclear pore complex (NPC) to the nuclear compartment. Kap95p is required during import for docking the nuclear localization signal-receptor and ligand to the NPC. Recycling of this factor back to the cytoplasm is necessary for continued rounds of import; however, the mechanism for Kap95p recycling is unknown. We have determined that recycling of Kap95p requires a nuclear export signal (NES). A region containing the NES in Kap95p was sufficient to mediate active nuclear export in a microinjection assay. Moreover, the NES was necessary for function. Mutation of the NES in Kap95p resulted in a temperaturesensitive import mutant, and immunofluorescence microscopy experiments showed that the mutated Kap95p was not recycled but instead localized in the nucleus and at the nuclear envelope. Srp1p, the yeast nuclear localization signal-receptor, also accumulated in the nuclei of the arrested kap95 mutant cells. Wild-type and NES-mutated Kap95p both bound Gsp1p (the yeast Ran/TC4 homologue), Srp1p, and the FXFG repeat region of the nucleoporin Nup1p. In contrast, the NES mutation abolished Kap95p interaction with the GLFG repeat regions from the nucleoporins Nup116p and Nup100p. In vivo interaction was demonstrated by isolation of Kap95p from yeast nuclear lysates in either protein A–tagged Nup116p or protein A–tagged Nup100p complexes. The protein A–tagged Nup116p complex also specifically contained Gle2p. These results support a model in which a step in the recycling of Kap95p is mediated by interaction of an NES with GLFG regions. Analysis of genetic interactions suggests Nup116p has a primary role in Kap95p recycling, with Nup100p compensating in the absence of Nup116p. This finding highlights an important role for a subfamily of GLFG nucleoporins in nuclear export processes.


2003 ◽  
Vol 23 (18) ◽  
pp. 6396-6405 ◽  
Author(s):  
Kevin O'Keefe ◽  
Huiping Li ◽  
Yanping Zhang

ABSTRACT As a shuttling protein, p53 is constantly transported through the nuclear pore complex. p53 nucleocytoplasmic transport is carried out by a bipartite nuclear localization signal (NLS) located at its C-terminal domain and two nuclear export signals (NES) located in its N- and C-terminal regions, respectively. The role of nucleocytoplasmic shuttling in p53 ubiquitination and degradation has been a subject of debate. Here we show that the two basic amino acid groups in the p53 bipartite NLS function collaboratively to import p53. Mutations disrupting individual amino acids in the NLS, although causing accumulation of p53 in the cytoplasm to various degrees, reduce but do not eliminate the NLS activity, and these mutants remain sensitive to MDM2 degradation. However, disrupting both parts of the bipartite NLS completely blocks p53 from entering the nucleus and causes p53 to become resistant to MDM2-mediated degradation. Similarly, mutations disrupting four conserved hydrophobic amino acids in the p53 C-terminal NES block p53 export and prohibit it from MDM2 degradation. We also show that colocalization of a nonshuttling p53 with MDM2 either in the nucleus or in the cytoplasm is sufficient for MDM2-induced p53 polyubiquitination but not degradation. Our data provide new insight into the mechanism and regulation of p53 nucleocytoplasmic shuttling and degradation.


Sign in / Sign up

Export Citation Format

Share Document