scholarly journals TP53 promotes lineage commitment of human embryonic stem cells through ciliogenesis and sonic hedgehog signaling

2021 ◽  
Author(s):  
Sushama Sivakumar ◽  
Shutao Qi ◽  
Ningyan Cheng ◽  
Adwait amod sathe ◽  
Mohammed Kanchwala ◽  
...  

Aneuploidy, defective differentiation, and inactivation of the tumor suppressor TP53 all occur frequently during tumorigenesis. Here, we probe the potential links among these cancer traits by inactivating TP53 in human embryonic stem cells (hESCs). TP53 knockout hESCs exhibit increased proliferation rates, mitotic errors, and low-grade structural aneuploidy; produce poorly differentiated immature teratomas in mice; and fail to differentiate into neural progenitor cells (NPC) in vitro. Genome-wide CRISPR screen reveals requirements of ciliogenesis and sonic hedgehog (Shh) pathways for hESC differentiation into NPCs. TP53 deletion causes abnormal ciliogenesis in neural rosettes. In addition to restraining cell proliferation through CDKN1A, TP53 activates the transcription of BBS9, which encodes a ciliogenesis regulator required for proper Shh signaling and NPC formation. This developmentally regulated transcriptional program of TP53 promotes ciliogenesis, restrains Shh signaling, and commits hESCs to neural lineages.

Science ◽  
2014 ◽  
Vol 346 (6216) ◽  
pp. 1529-1533 ◽  
Author(s):  
Kosuke Funato ◽  
Tamara Major ◽  
Peter W. Lewis ◽  
C. David Allis ◽  
Viviane Tabar

Over 70% of diffuse intrinsic pediatric gliomas, an aggressive brainstem tumor, harbor heterozygous mutations that create a K27M amino acid substitution (methionine replaces lysine 27) in the tail of histone H3.3. The role of the H3.3K27M mutation in tumorigenesis is not fully understood. Here, we use a human embryonic stem cell system to model this tumor. We show that H3.3K27M expression synergizes with p53 loss and PDGFRA activation in neural progenitor cells derived from human embryonic stem cells, resulting in neoplastic transformation. Genome-wide analyses indicate a resetting of the transformed precursors to a developmentally more primitive stem cell state, with evidence of major modifications of histone marks at several master regulator genes. Drug screening assays identified a compound targeting the protein menin as an inhibitor of tumor cell growth in vitro and in mice.


2010 ◽  
Vol 4 (1) ◽  
pp. 38-49 ◽  
Author(s):  
Selena Meiyun Wu ◽  
Andre B.H. Choo ◽  
Miranda G.S. Yap ◽  
Ken Kwok-Keung Chan

Author(s):  
Eun-Young Shin ◽  
Seah Park ◽  
Won Yun Choi ◽  
Dong Ryul Lee

Abstract Background: Leydig cells (LCs) are testicular somatic cells that are the major producers of testosterone in males. Testosterone is essential for male physiology and reproduction. Reduced testosterone levels lead to hypogonadism and are associated with diverse pathologies, such as neuronal dysfunction, cardiovascular disease, and metabolic syndrome. LC transplantation is a promising therapy for hypogonadism; however, the number of LCs in the testis is very rare and they do not proliferate in vitro. Therefore, there is a need for an alternative source of LCs. Methods: To develop a safer, simple, and rapid strategy to generate human LC-like cells (LLCs) from stem cells, we first performed preliminary tests under different conditions for the induction of LLCs from human CD34/CD73 double positive-testis-derived stem cells (HTSCs). Based on the embryological sequence of events, we suggested a 3-step strategy for the differentiation of human ESCs into LLCs. We generated the mesendoderm in the first stage and intermediate mesoderm (IM) in the second stage and optimized the conditions for differentiation of IM into LLCs by comparing the secreted testosterone levels of each group. Results: HTSCs and human embryonic stem cells can be directly differentiated into LLCs by defined molecular compounds within a short period. Human ESC-derived LLCs can secrete testosterone and express steroidogenic markers. Conclusion: We developed a rapid and efficient protocol for the production of LLCs from stem cells using defined molecular compounds. These findings provide a new therapeutic cell source for male hypogonadism.


2013 ◽  
Vol 14 (12) ◽  
pp. 4207-4216 ◽  
Author(s):  
Matthew Leung ◽  
Ashleigh Cooper ◽  
Soumen Jana ◽  
Ching-Ting Tsao ◽  
Timothy A. Petrie ◽  
...  

2010 ◽  
Vol 6 (2) ◽  
pp. 237-247 ◽  
Author(s):  
Elaine Vo ◽  
Donny Hanjaya-Putra ◽  
Yuanting Zha ◽  
Sravanti Kusuma ◽  
Sharon Gerecht

Blood ◽  
2011 ◽  
Vol 117 (11) ◽  
pp. 3065-3075 ◽  
Author(s):  
Olena Klimchenko ◽  
Antonio Di Stefano ◽  
Birgit Geoerger ◽  
Sofiane Hamidi ◽  
Paule Opolon ◽  
...  

Abstract The early emergence of macrophages and their large pattern of tissue distribution during development suggest that they may play a critical role in the initial steps of embryogenesis. In the present study, we show that monocytic cells derived from human embryonic stem cells (hESCs) and from fetal liver follow a differentiation pathway different to that of adult cells, leading to specific functions. Embryonic and fetal monocytic cells differentiated from a CD14lowCD16− precursor to form CD14highCD16+ cells without producing the CD14highCD16− cell population that predominates in adult peripheral blood. Both demonstrated an enhanced expression of genes encoding tissue-degrading enzymes, chemokines, and scavenger receptors, as was previously reported for M2 macrophages. Compared with adult blood monocytes, embryonic and fetal monocytic cells secreted high amounts of proteins acting on tissue remodeling and angiogenesis, and most of them expressed the Tie2 receptor. Furthermore, they promoted vascular remodeling in xenotransplanted human tumors. These findings suggest that the regulation of human fetal and embryonic monocytic cell differentiation leads to the generation of cells endowed mainly with anti-inflammatory and remodeling functions. Trophic and immunosuppressive functions of M2-polarized macrophages link fetus and tumor development, and hESCs offer a valuable experimental model for in vitro studies of mechanisms sustaining these processes.


Sign in / Sign up

Export Citation Format

Share Document