scholarly journals Ageing and the ipsilateral M1 BOLD response: a connectivity study

2021 ◽  
Author(s):  
Yae Won Tak ◽  
Ethan Knights ◽  
Richard Henson ◽  
Peter Zeidman

Young people exhibit a negative BOLD response in ipsilateral primary motor cortex (M1) when making unilateral movements, such as button presses. This negative BOLD response becomes more positive as people age. Here we investigated why this occurs, in terms of the underlying effective connectivity and haemodynamics. We applied dynamic causal modelling (DCM) to task fMRI data from 635 participants aged 18-88 from the Cam-CAN dataset, who performed a cued button pressing task with their right hand. We found that connectivity from contralateral supplementary motor area (SMA) and dorsal premotor cortex (PMd) to ipsilateral M1 became more positive with age, explaining 44% of the variability across people in ipsilateral M1 responses. Neurovascular and haemodynamic parameters in the model were not able to explain the age-related shift to positive BOLD. Our results add to a body of evidence implicating neural, rather than vascular factors as the predominant cause of negative BOLD - while emphasising the importance of inter-hemispheric connectivity. This study provides a foundation for investigating the clinical and lifestyle factors that determine the sign and amplitude of the M1 BOLD response, which could serve as a proxy for neural and vascular health, via the underlying neurovascular mechanisms.

2021 ◽  
Vol 11 (9) ◽  
pp. 1130
Author(s):  
Yae Won Tak ◽  
Ethan Knights ◽  
Richard Henson ◽  
Peter Zeidman

Young people exhibit a negative BOLD response in ipsilateral primary motor cortex (M1) when making unilateral movements, such as button presses. This negative BOLD response becomes more positive as people age. In this study, we investigated why this occurs, in terms of the underlying effective connectivity and haemodynamics. We applied dynamic causal modeling (DCM) to task fMRI data from 635 participants aged 18–88 from the Cam-CAN dataset, who performed a cued button pressing task with their right hand. We found that connectivity from contralateral supplementary motor area (SMA) and dorsal premotor cortex (PMd) to ipsilateral M1 became more positive with age, explaining 44% of the variability across people in ipsilateral M1 responses. In contrast, connectivity from contralateral M1 to ipsilateral M1 was weaker and did not correlate with individual differences in rM1 BOLD. Neurovascular and haemodynamic parameters in the model were not able to explain the age-related shift to positive BOLD. Our results add to a body of evidence implicating neural, rather than vascular factors as the predominant cause of negative BOLD—while emphasising the importance of inter-hemispheric connectivity. This study provides a foundation for investigating the clinical and lifestyle factors that determine the sign and amplitude of the M1 BOLD response in ageing, which could serve as a proxy for neural and vascular health, via the underlying neurovascular mechanisms.


2000 ◽  
Vol 84 (3) ◽  
pp. 1667-1672 ◽  
Author(s):  
Kiyoshi Kurata ◽  
Toshiaki Tsuji ◽  
Satoshi Naraki ◽  
Morio Seino ◽  
Yoshinao Abe

Using functional magnetic resonance imaging (fMRI), we measured regional blood flow to examine which motor areas of the human cerebral cortex are preferentially involved in an auditory conditional motor behavior. As a conditional motor task, randomly selected 330 or 660 Hz tones were presented to the subjects every 1.0 s. The low and high tones indicated that the subjects should initiate three successive opposition movements by tapping together the right thumb and index finger or the right thumb and little finger, respectively. As a control task, the same subjects were asked to alternate the two opposition movements, in response to randomly selected tones that were presented at the same frequencies. Between the two tasks, MRI images were also scanned in the resting state while the tones were presented in the same way. Comparing the images during each of the two tasks with images during the resting state, it was observed that several frontal motor areas, including the primary motor cortex, dorsal premotor cortex (PMd), supplementary motor area (SMA), and pre-SMA, were activated. However, preferential activation during the conditional motor task was observed only in the PMd and pre-SMA of the subjects' left (contralateral) frontal cortex. The PMd has been thought to play an important role in transforming conditional as well as spatial visual cues into corresponding motor responses, but our results suggest that the PMd along with the pre-SMA are the sites where more general and extensive sensorimotor integration takes place.


2007 ◽  
Vol 578 (2) ◽  
pp. 551-562 ◽  
Author(s):  
Giacomo Koch ◽  
Michele Franca ◽  
Hitoshi Mochizuki ◽  
Barbara Marconi ◽  
Carlo Caltagirone ◽  
...  

Stroke ◽  
2021 ◽  
Author(s):  
Robert Schulz ◽  
Marlene Bönstrup ◽  
Stephanie Guder ◽  
Jingchun Liu ◽  
Benedikt Frey ◽  
...  

Background and Purpose: Cortical beta oscillations are reported to serve as robust measures of the integrity of the human motor system. Their alterations after stroke, such as reduced movement-related beta desynchronization in the primary motor cortex, have been repeatedly related to the level of impairment. However, there is only little data whether such measures of brain function might directly relate to structural brain changes after stroke. Methods: This multimodal study investigated 18 well-recovered patients with stroke (mean age 65 years, 12 males) by means of task-related EEG and diffusion-weighted structural MRI 3 months after stroke. Beta power at rest and movement-related beta desynchronization was assessed in 3 key motor areas of the ipsilesional hemisphere that are the primary motor cortex (M1), the ventral premotor area and the supplementary motor area. Template trajectories of corticospinal tracts (CST) originating from M1, premotor cortex, and supplementary motor area were used to quantify the microstructural state of CST subcomponents. Linear mixed-effects analyses were used to relate tract-related mean fractional anisotropy to EEG measures. Results: In the present cohort, we detected statistically significant reductions in ipsilesional CST fractional anisotropy but no alterations in EEG measures when compared with healthy controls. However, in patients with stroke, there was a significant association between both beta power at rest ( P =0.002) and movement-related beta desynchronization ( P =0.003) in M1 and fractional anisotropy of the CST specifically originating from M1. Similar structure-function relationships were neither evident for ventral premotor area and supplementary motor area, particularly with respect to their CST subcomponents originating from premotor cortex and supplementary motor area, in patients with stroke nor in controls. Conclusions: These data suggest there might be a link connecting microstructure of the CST originating from M1 pyramidal neurons and beta oscillatory activity, measures which have already been related to motor impairment in patients with stroke by previous reports.


NeuroImage ◽  
2012 ◽  
Vol 62 (1) ◽  
pp. 500-509 ◽  
Author(s):  
Sergiu Groppa ◽  
Nicole Werner-Petroll ◽  
Alexander Münchau ◽  
Günther Deuschl ◽  
Matthew F.S. Ruschworth ◽  
...  

2015 ◽  
Vol 36 (1) ◽  
pp. 301-303 ◽  
Author(s):  
Zhen Ni ◽  
Reina Isayama ◽  
Gabriel Castillo ◽  
Carolyn Gunraj ◽  
Utpal Saha ◽  
...  

NeuroImage ◽  
2019 ◽  
Vol 184 ◽  
pp. 36-44 ◽  
Author(s):  
David M.A. Mehler ◽  
Angharad N. Williams ◽  
Florian Krause ◽  
Michael Lührs ◽  
Richard G. Wise ◽  
...  

2020 ◽  
Author(s):  
Lukas Hensel ◽  
Caroline Tscherpel ◽  
Jana Freytag ◽  
Stella Ritter ◽  
Anne K Rehme ◽  
...  

Abstract Hemiparesis after stroke is associated with increased neural activity not only in the lesioned but also in the contralesional hemisphere. While most studies have focused on the role of contralesional primary motor cortex (M1) activity for motor performance, data on other areas within the unaffected hemisphere are scarce, especially early after stroke. We here combined functional magnetic resonance imaging (fMRI) and transcranial magnetic stimulation (TMS) to elucidate the contribution of contralesional M1, dorsal premotor cortex (dPMC), and anterior intraparietal sulcus (aIPS) for the stroke-affected hand within the first 10 days after stroke. We used “online” TMS to interfere with neural activity at subject-specific fMRI coordinates while recording 3D movement kinematics. Interfering with aIPS activity improved tapping performance in patients, but not healthy controls, suggesting a maladaptive role of this region early poststroke. Analyzing effective connectivity parameters using a Lasso prediction model revealed that behavioral TMS effects were predicted by the coupling of the stimulated aIPS with dPMC and ipsilesional M1. In conclusion, we found a strong link between patterns of frontoparietal connectivity and TMS effects, indicating a detrimental influence of the contralesional aIPS on motor performance early after stroke.


Sign in / Sign up

Export Citation Format

Share Document