scholarly journals Selective logging shows no impact on the dietary breadth of the fawn leaf-nosed bat (Hipposideros cervinus)

2021 ◽  
Author(s):  
David Richard Hemprich-Bennett ◽  
Victoria A Kemp ◽  
Joshua Blackman ◽  
Owen T Lewis ◽  
Matthew J Struebig ◽  
...  

Logging activities degrade forest habitats across large areas of the tropics, but the impacts on trophic interactions that underpin forest ecosystems are poorly understood. DNA metabarcoding provides an invaluable tool to investigate such interactions, allowing analysis at a far greater scale and resolution than has previously been possible. We analysed the diet of the insectivorous fawn leaf-nosed bat Hipposideros cervinus across a forest disturbance gradient in Borneo, using a dataset of ecological interactions from an unprecedented number of bat-derived faecal samples. Bats predominantly consumed insects from the orders Lepidoptera, Blattodea, Diptera and Coleoptera, and the taxonomic composition of their diet remained relatively consistent across sites regardless of logging disturbance. There was little difference in the richness of prey consumed in each logging treatment, indicating potential resilience of this species to habitat degradation. In fact, bats consumed a high richness of prey items, and intensive sampling is needed to reliably compare feeding ecology over multiple sites regardless of the bioinformatic procedures used.

2017 ◽  
Vol 47 (3) ◽  
pp. 289-296 ◽  
Author(s):  
Katsuto Shimizu ◽  
Raul Ponce-Hernandez ◽  
Oumer S. Ahmed ◽  
Tetsuji Ota ◽  
Zar Chi Win ◽  
...  

Detecting forest disturbances is an important task in formulating mitigation strategies for deforestation and forest degradation in the tropics. Our study investigated the use of Landsat time series imagery combined with a trajectory-based analysis for detecting forest disturbances resulting exclusively from selective logging in Myanmar. Selective logging was the only forest disturbance and degradation indicator used in this study as a causative force, and the results showed that the overall accuracy for forest disturbance detection based on selective logging was 83.0% in the study area. The areas affected by selective logging and other factors accounted for 4.7% and 5.4%, respectively, of the study area from 2000 to 2014. The detected disturbance areas were underestimated according to error assessments; however, a significant correlation between areas of disturbance and numbers of harvested trees during the logging year was observed, indicating the utility of a trajectory-based, annual Landsat imagery time series analysis for selective logging detection in the tropics. A major constraint of this study was the lack of available data for disturbances other than selective logging. Further studies should focus on identifying other types of disturbances and their impacts on future forest conditions.


2017 ◽  
Vol 65 (6) ◽  
pp. 362
Author(s):  
Francesca Lyndon-Gee ◽  
Joanna Sumner ◽  
Yang Hu ◽  
Claudio Ciofi ◽  
Tim S. Jessop

Rotational logging practices are used with the goal of reducing forest disturbance impacts on biodiversity. However, it is poorly understood whether such forest management practices conserve the demographic and genetic composition of animal populations across logged landscapes. Here we investigated whether rotational logging practices alter patterns of landscape-scale population abundance and genetic diversity of a forest-dwelling lizard (Eulamprus heatwolei) in south-eastern Australia. We sampled lizards (n = 407) at up to 48 sites across a chronosequence of logging disturbance intervals (<10 to >60 years after logging) to assess site-specific population changes and genetic diversity parameters. Lizard abundances exhibited a significant curvilinear response to time since logging, with decreased numbers following logging (<10 years), increased abundance as the forest regenerated (10–20 years), before decreasing again in older regenerated forest sites (>30 years). Lizard genetic diversity parameters were not significantly influenced by logging disturbance. These results suggest that logging practices, whilst inducing short-term changes to population abundance, had no measurable effects on the landscape-scale genetic diversity of E. heatwolei. These results are important as they demonstrate the value of monitoring for evaluating forest management efficacy, and the use of different population-level markers to make stronger inference about the potential impacts of logging activities.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3442 ◽  
Author(s):  
Fernanda Michalski ◽  
Carlos A. Peres

Although large-bodied tropical forest birds are impacted by both habitat loss and fragmentation, their patterns of habitat occupancy will also depend on the degree of forest habitat disturbance, which may interact synergistically or additively with fragmentation effects. Here, we examine the effects of forest patch and landscape metrics, and levels of forest disturbance on the patterns of persistence of six gamebird taxa in the southern Brazilian Amazon. We use both interview data conducted with long-term residents and/or landowners from 129 remnant forest patches and 15 continuous forest sites and line-transect census data from a subset of 21 forest patches and two continuous forests. Forest patch area was the strongest predictor of species persistence, explaining as much as 46% of the overall variation in gamebird species richness. Logistic regression models showed that anthropogenic disturbance—including surface wildfires, selective logging and hunting pressure—had a variety of effects on species persistence. Most large-bodied gamebird species were sensitive to forest fragmentation, occupying primarily large, high-quality forest patches in higher abundances, and were typically absent from patches <100 ha. Our findings highlight the importance of large (>10,000 ha), relatively undisturbed forest patches to both maximize persistence and maintain baseline abundances of large neotropical forest birds.


Author(s):  
Francis E. Putz ◽  
Tracy Baker ◽  
Bronson W. Griscom ◽  
Trisha Gopalakrishna ◽  
Anand Roopsind ◽  
...  

2018 ◽  
Vol 15 (11) ◽  
pp. 3377-3390 ◽  
Author(s):  
Victoria Meyer ◽  
Sassan Saatchi ◽  
David B. Clark ◽  
Michael Keller ◽  
Grégoire Vincent ◽  
...  

Abstract. Large tropical trees store significant amounts of carbon in woody components and their distribution plays an important role in forest carbon stocks and dynamics. Here, we explore the properties of a new lidar-derived index, the large tree canopy area (LCA) defined as the area occupied by canopy above a reference height. We hypothesize that this simple measure of forest structure representing the crown area of large canopy trees could consistently explain the landscape variations in forest volume and aboveground biomass (AGB) across a range of climate and edaphic conditions. To test this hypothesis, we assembled a unique dataset of high-resolution airborne light detection and ranging (lidar) and ground inventory data in nine undisturbed old-growth Neotropical forests, of which four had plots large enough (1 ha) to calibrate our model. We found that the LCA for trees greater than 27 m (∼ 25–30 m) in height and at least 100 m2 crown size in a unit area (1 ha), explains more than 75 % of total forest volume variations, irrespective of the forest biogeographic conditions. When weighted by average wood density of the stand, LCA can be used as an unbiased estimator of AGB across sites (R2 = 0.78, RMSE = 46.02 Mg ha−1, bias = −0.63 Mg ha−1). Unlike other lidar-derived metrics with complex nonlinear relations to biomass, the relationship between LCA and AGB is linear and remains unique across forest types. A comparison with tree inventories across the study sites indicates that LCA correlates best with the crown area (or basal area) of trees with diameter greater than 50 cm. The spatial invariance of the LCA–AGB relationship across the Neotropics suggests a remarkable regularity of forest structure across the landscape and a new technique for systematic monitoring of large trees for their contribution to AGB and changes associated with selective logging, tree mortality and other types of tropical forest disturbance and dynamics.


Genome ◽  
2017 ◽  
Vol 60 (1) ◽  
pp. 55-64 ◽  
Author(s):  
Helena Korpelainen ◽  
Maria Pietiläinen

In the present study, we conducted DNA metabarcoding (the nuclear ITS2 region) for indoor fungal samples originating from two nursery schools with a suspected mould problem (sampling before and after renovation), from two university buildings, and from an old farmhouse. Good-quality sequences were obtained, and the results showed that DNA metabarcoding provides high resolution in fungal identification. The pooled proportions of sequences representing filamentous ascomycetes, filamentous basidiomycetes, yeasts, and other fungi equalled 62.3%, 8.0%, 28.3%, and 1.4%, respectively, and the total number of fungal genera found during the study was 585. When comparing fungal diversities and taxonomic composition between different types of buildings, no obvious pattern was detected. The average pairwise values of SørensenChao indices that were used to compare similarities for taxon composition between samples among the samples from the two university buildings, two nurseries, and farmhouse equaled 0.693, 0.736, 0.852, 0.928, and 0.981, respectively, while the mean similarity index for all samples was 0.864. We discovered that making explicit conclusions on the relationship between the indoor air quality and mycoflora is complicated by the lack of appropriate indicators for air quality and by the occurrence of wide spatial and temporal changes in diversity and compositions among samples.


2021 ◽  
Vol 491 ◽  
pp. 119170
Author(s):  
Gbadamassi G.O. Dossa ◽  
Ekananda Paudel ◽  
Douglas Schaefer ◽  
Jiao-Lin Zhang ◽  
Kun-Fang Cao ◽  
...  

Silva Fennica ◽  
2019 ◽  
Vol 53 (1) ◽  
Author(s):  
Irving Hernández-Gómez ◽  
Carlos Cerdán ◽  
Angélica Navarro-Martínez ◽  
Dinora Vázquez-Luna ◽  
Samaria Armenta-Montero ◽  
...  

Detecting and monitoring forest disturbance from selective logging is necessary to develop effective strategies and polices that conserve tropical forests and mitigate climate change. We assessed the potential of using the remote sensing tool, CLASlite forest monitoring system, to detect disturbance from timber harvesting in four community forests () of the Selva Maya on the Yucatan Peninsula, Mexico. Selective logging impacts (e.g. felling gaps, skid trails, logging roads and log landings) were mapped using GPS in the 2014 annual cutting areas (ACAs) of each ejido. We processed and analyzed two pre-harvest Landsat images (2001 and 2013) and one post-harvest image (November 2014) with the CLASlite system, producing maps of degraded, deforested and unlogged areas in each ACA. Based on reference points of disturbed (felling and skidding), deforested (log landings and roads) and unlogged areas in each ACA, we applied accuracy assessments which showed very low overall accuracies (<19.1%). Selective logging impacts, mainly from log landings and new logging road construction, were detected in only one ejido which had the highest logging intensity (7 m ha).ejidos3–1


Sign in / Sign up

Export Citation Format

Share Document