university buildings
Recently Published Documents


TOTAL DOCUMENTS

226
(FIVE YEARS 76)

H-INDEX

13
(FIVE YEARS 2)

Management ◽  
2022 ◽  
Vol 34 (2) ◽  
pp. 18-25
Author(s):  
Liudmyla Hanushchak-Yefimenko

BACKGROUND AND OBJECTIVES. Improving the energy performance of buildings is one of the least expensive ways to reduce energy consumption and greenhouse gas emissions. Building energy performance certification increases public knowledge about energy conservation and allows consumers and other decision makers to compare buildings based on their lifetime performance. In addition, energy performance certifications are an incentive for owners to improve the efficiency of existing buildings.METHODS. It is proposed to use in the process of energy certification and energy audit of university buildings collection and evaluation of basic information (including information about local climate, method of use, value of thermal conductivity coefficient and building envelope area, orientation) to determine the level of energy efficiency of the building on a generally accepted scale. In the Certificate of energy efficiency to take into account the calculated results from the assessment of the energy performance of the building.FINDINGS. It is suggested that the results of the energy certification of university buildings be presented in a simple, clear form, to ensure clarity, ease of use and comparability. For the energy certification of university buildings, a comparative labeling from A to G is proposed for use. The scale, on which the current national building standard is at "C," provides ample room for improving the rating of both new and existing buildings. If necessary, the scale should be expanded to add a label such as A1, A2, or A+, A++ when it comes to high-performance buildings.CONCLUSION. Accurate and reliable energy performance certification is a necessary foundation that will help ensure consumer confidence and the success of the certification program. The certification program must be clearly coordinated to ensure a smooth transition of the construction industry to the new rules.


Management ◽  
2022 ◽  
Vol 34 (2) ◽  
pp. 26-34
Author(s):  
Olena Nifatova

BACKGROUND AND OBJECTIVES. Modern university buildings use a large number of resources, such as heat, cold and hot water, as well as electricity, which is the main consumed energy resource and is used for lighting, office equipment, ventilation and air conditioning systems. In order to improve the energy efficiency of university buildings, it is necessary to carry out heat and energy modernization of internal and external envelopes, which will allow for internal billing and qualitative analysis of consumption, which contribute to prompt decision-making on heat and energy modernization of the premises.METHODS. To assess the potential for improving the energy efficiency of buildings by improving the quality of protective structures, methods for assessing the temperature and humidity conditions of multilayered enclosing structures in a wide range of humidity under stationary boundary conditions were developed on the basis of the University Hub of Knowledge.FINDINGS. On the basis of the University Hub of Knowledge, Kyiv National University of Technologies and Design, the moisture content profile was calculated for the general estimation of the moisture condition for building No. 4, the planes of the highest moisture content were determined to find the most dangerous, from the moisture condition point of view, section of the structure, the calculation of the enclosing structure modernization according to the maximum allowable moisture condition for the analysis of moisture accumulation in the coldest month of the year was made.CONCLUSION. The advantage of the proposed method of increasing the energy efficiency of buildings by improving the quality of protective structures based on the University Hub of Knowledge is the possibility of calculation in a wide range of moisture content of materials, including supersorption moisture zone, as well as applicability to structures with multizone condensation of moisture. The clarity and simplicity of the proposed method makes it available for the practical implementation of energy efficiency improvements in all university buildings.


2022 ◽  
Vol 207 ◽  
pp. 108417
Author(s):  
Jian Zang ◽  
Mohammad Royapoor ◽  
Kishor Acharya ◽  
Jennine Jonczyk ◽  
David Werner

2021 ◽  
pp. 111783
Author(s):  
K. Gaspar ◽  
M. Gangolells ◽  
M. Casals ◽  
P. Pujadas ◽  
N. Forcada ◽  
...  

2021 ◽  
Vol 13 (22) ◽  
pp. 12662
Author(s):  
Joaquín Fuentes-del-Burgo ◽  
Elena Navarro-Astor ◽  
Nuno M. M. Ramos ◽  
João Poças Martins

For more than a decade, the European Union has been implementing an ambitious energy policy focused on reducing CO2 emissions, increasing the use of renewable energy and improving energy efficiency. This paper investigates the factors that hinder the application of renewable energy technologies (RETs) in existing university buildings in Spain and Portugal. Following a qualitative methodology, 33 technicians working in the infrastructure management offices of 24 universities have been interviewed. The factors identified have been classified into economic-financial, administrative and legislative barriers, architectural, urban planning, technological, networking, social acceptance, institutional and others. It is concluded that there have not been sufficient economic incentives to carry out RETs projects in this type of building. Conditioning factors can act individually or jointly, generating a greater effect. Most participants consider that there are no social acceptance barriers. Knowledge of these determinants can facilitate actions that help implement this technology on university campuses in both countries.


2021 ◽  
Author(s):  
Dayane Cynthia Pinto Oliveira ◽  
Max Chianca Pimentel Filho ◽  
Antonio Alisson Alencar Freitas

Sign in / Sign up

Export Citation Format

Share Document