scholarly journals Strong gamma frequency oscillations in the adolescent prefrontal cortex

2021 ◽  
Author(s):  
Zhengyang Wang ◽  
Balbir Singh ◽  
Xin Zhou ◽  
Christos Constantinidis

AbstractWorking memory ability continues to mature into adulthood in both humans and non-human primates. At the single neuron level, adolescent development is characterized by increased prefrontal firing rate in the delay period, but less is known about how coordinated activity between neurons is altered. Local field potentials (LFP) provide a window into the computation carried out by the local network. To address the effects of adolescent development on LFP activity, three male rhesus monkeys were trained to perform an oculomotor delayed response task and tested at both the adolescent and adult stage. Simultaneous single-unit and LFP signals were recorded from areas 8a and 46 of the dorsolateral prefrontal cortex (dlPFC). In both the cue and delay period, power relative to baseline increased in the gamma frequency range (32 - 128 Hz). In the adult stage, high-firing neurons were also more likely to reside at sites with strong gamma power increase from baseline. For both stages, the gamma power increase in the delay was selective for sites with neuron encoding stimulus information in their spiking. Gamma power and neuronal firing did not show stronger temporal correlations. Our results establish gamma power decrease to be a feature of prefrontal cortical maturation.Significance StatementGamma-frequency oscillations in extracellular field recordings (such as LFP or EEG) are a marker of normal interactions between excitatory and inhibitory neurons in neural circuits. Abnormally low gamma power during working memory is seen in conditions such as schizophrenia. We sought to examine whether the immature prefrontal cortex similarly exhibits lower power in the gamma frequency range during working memory, in a non-human primate model of adolescence. Contrary to this expectation, the adolescent PFC exhibited stronger gamma power during the maintenance of working memory. Our findings reveal an unknown developmental maturation trajectory of gamma band oscillations and raise the possibility that schizophrenia represent an excessive state of prefrontal maturation.

2019 ◽  
Vol 10 (1) ◽  
pp. 3
Author(s):  
Aarron Phensy ◽  
Sven Kroener

The term “working memory” (WM) describes the ability to maintain and manipulate information in the memory for the guidance of goal-directed behavior [...]


2000 ◽  
Vol 83 (3) ◽  
pp. 1733-1750 ◽  
Author(s):  
Daniel Durstewitz ◽  
Jeremy K. Seamans ◽  
Terrence J. Sejnowski

The prefrontal cortex (PFC) is critically involved in working memory, which underlies memory-guided, goal-directed behavior. During working-memory tasks, PFC neurons exhibit sustained elevated activity, which may reflect the active holding of goal-related information or the preparation of forthcoming actions. Dopamine via the D1 receptor strongly modulates both this sustained (delay-period) activity and behavioral performance in working-memory tasks. However, the function of dopamine during delay-period activity and the underlying neural mechanisms are only poorly understood. Recently we proposed that dopamine might stabilize active neural representations in PFC circuits during tasks involving working memory and render them robust against interfering stimuli and noise. To further test this idea and to examine the dopamine-modulated ionic currents that could give rise to increased stability of neural representations, we developed a network model of the PFC consisting of multicompartment neurons equipped with Hodgkin-Huxley-like channel kinetics that could reproduce in vitro whole cell and in vivo recordings from PFC neurons. Dopaminergic effects on intrinsic ionic and synaptic conductances were implemented in the model based on in vitro data. Simulated dopamine strongly enhanced high, delay-type activity but not low, spontaneous activity in the model network. Furthermore the strength of an afferent stimulation needed to disrupt delay-type activity increased with the magnitude of the dopamine-induced shifts in network parameters, making the currently active representation much more stable. Stability could be increased by dopamine-induced enhancements of the persistent Na+and N-methyl-d-aspartate (NMDA) conductances. Stability also was enhanced by a reductionin AMPA conductances. The increase in GABAA conductances that occurs after stimulation of dopaminergic D1 receptors was necessary in this context to prevent uncontrolled, spontaneous switches into high-activity states (i.e., spontaneous activation of task-irrelevant representations). In conclusion, the dopamine-induced changes in the biophysical properties of intrinsic ionic and synaptic conductances conjointly acted to highly increase stability of activated representations in PFC networks and at the same time retain control over network behavior and thus preserve its ability to adequately respond to task-related stimuli. Predictions of the model can be tested in vivo by locally applying specific D1 receptor, NMDA, or GABAA antagonists while recording from PFC neurons in delayed reaction-type tasks with interfering stimuli.


2002 ◽  
Vol 87 (1) ◽  
pp. 567-588 ◽  
Author(s):  
Kazuyoshi Takeda ◽  
Shintaro Funahashi

To examine what kind of information task-related activity encodes during spatial working memory processes, we analyzed single-neuron activity in the prefrontal cortex while two monkeys performed two different oculomotor delayed-response (ODR) tasks. In the standard ODR task, monkeys were required to make a saccade to the cue location after a 3-s delay, whereas in the rotatory ODR (R-ODR) task, they were required to make a saccade 90° clockwise from the cue location after the 3-s delay. By comparing the same task-related activities in these two tasks, we could determine whether such activities encoded the location of the visual cue or the direction of the saccade. One hundred twenty one neurons exhibited task-related activity in relation to at least one task event in both tasks. Among them, 41 neurons exhibited directional cue-period activity, most of which encoded the location of the visual cue. Among 56 neurons with directional delay-period activity, 86% encoded the location of the visual cue, whereas 13% encoded the direction of the saccade. Among 57 neurons with directional response-period activity, 58% encoded the direction of the saccade, whereas 35% encoded the location of the visual cue. Most neurons whose response-period activity encoded the location of the visual cue also exhibited directional delay-period activity that encoded the location of the visual cue as well. The best directions of these two activities were identical, and most of these response-period activities were postsaccadic. Therefore this postsaccadic activity can be considered a signal to terminate unnecessary delay-period activity. Population histograms encoding the location of the visual cue showed tonic sustained activation during the delay period. However, population histograms encoding the direction of the saccade showed a gradual increase in activation during the delay period. These results indicate that the transformation from visual input to motor output occurs in the dorsolateral prefrontal cortex. The analysis using population histograms suggests that this transformation occurs gradually during the delay period.


2005 ◽  
Vol 17 (11) ◽  
pp. 1679-1690 ◽  
Author(s):  
Bradley R. Postle

The prefrontal cortex (PFC) contributes to working memory functions via executive control processes that do not entail the storage, per se, of mnemonic representations. One of these control processes may be a sensory gating mechanism that facilitates retention of representations in working memory by down-regulating the gain of the sensory processing of intervening irrelevant stimuli. This idea was tested by scanning healthy young adults with functional magnetic resonance imaging while they performed a delayed face-recognition task. The 2 × 2 factorial design varied the factors of Memory (present, absent) and Distraction (present, absent). During memory-present trials, target and probe stimuli were individual gray-scale male faces. Memory-absent trials were identical, except that they employed the same recurring female faces (denoting a “no memory” trial). Distraction-present trials featured rapid serial visual presentation of bespectacled male faces during the two middle seconds of the delay. The first step of the analyses identified dorsolateral PFC (dlPFC) and inferior occipitotemporal cortex (IOTC) voxels exhibiting delay-period activity in memory-present/distraction-absent trials, that is, the “unfilled” delay. Within these voxels, distraction-evoked activity in the dlPFC was markedly higher during trials that required the concurrent short-term retention of information than on those that did not, whereas the opposite effect was seen in the IOTC. These results are consistent with the view that processes related to sensory gating account for a portion of the delay-period activity that is routinely observed in the dlPFC.


2021 ◽  
Vol 21 (9) ◽  
pp. 2795
Author(s):  
Zhengyang Wang ◽  
Balbir Singh ◽  
Xuelian Qi ◽  
Xin Zhou ◽  
Christos Constantinidis

2021 ◽  
Author(s):  
Maria Chernysheva ◽  
Yaroslav Sych ◽  
Aleksejs Fomins ◽  
José Luis Alatorre Warren ◽  
Christopher Lewis ◽  
...  

ABSTRACTThe medial prefrontal cortex (mPFC) and the dorsomedial striatum (dmStr) are linked to working memory (WM) but how striatum-projecting mPFC neurons contribute to WM encoding, maintenance, or retrieval remains unclear. Here, we probed mPFC→dmStr pathway function in freely-moving mice during a T-maze alternation test of spatial WM. Fiber photometry of GCaMP6m-labeled mPFC→dmStr projection neurons revealed strongest activity during the delay period that requires WM maintenance. Demonstrating causality, optogenetic inhibition of mPFC→dmStr neurons only during the delay period impaired performance. Conversely, enhancing mPFC→dmStr pathway activity—via pharmacological suppression of HCN1 or by optogenetic activation during the delay— alleviated WM impairment induced by NMDA receptor blockade. Consistently, cellular-resolution miniscope imaging resolved preferred activation of >50% mPFC→dmStr neurons during WM maintenance. This subpopulation was distinct from neurons showing preference for encoding and retrieval. In all periods, including the delay, neuronal sequences were evident. Striatum-projecting mPFC neurons thus critically contribute to spatial WM maintenance.


2017 ◽  
Vol 117 (6) ◽  
pp. 2269-2281 ◽  
Author(s):  
R. O. Konecky ◽  
M. A. Smith ◽  
C. R. Olson

To explore the brain mechanisms underlying multi-item working memory, we monitored the activity of neurons in the dorsolateral prefrontal cortex while macaque monkeys performed spatial and chromatic versions of a Sternberg working-memory task. Each trial required holding three sequentially presented samples in working memory so as to identify a subsequent probe matching one of them. The monkeys were able to recall all three samples at levels well above chance, exhibiting modest load and recency effects. Prefrontal neurons signaled the identity of each sample during the delay period immediately following its presentation. However, as each new sample was presented, the representation of antecedent samples became weak and shifted to an anomalous code. A linear classifier operating on the basis of population activity during the final delay period was able to perform at approximately the level of the monkeys on trials requiring recall of the third sample but showed a falloff in performance on trials requiring recall of the first or second sample much steeper than observed in the monkeys. We conclude that delay-period activity in the prefrontal cortex robustly represented only the most recent item. The monkeys apparently based performance of this classic working-memory task on some storage mechanism in addition to the prefrontal delay-period firing rate. Possibilities include delay-period activity in areas outside the prefrontal cortex and changes within the prefrontal cortex not manifest at the level of the firing rate. NEW & NOTEWORTHY It has long been thought that items held in working memory are encoded by delay-period activity in the dorsolateral prefrontal cortex. Here we describe evidence contrary to that view. In monkeys performing a serial multi-item working memory task, dorsolateral prefrontal neurons encode almost exclusively the identity of the sample presented most recently. Information about earlier samples must be encoded outside the prefrontal cortex or represented within the prefrontal cortex in a cryptic code.


2014 ◽  
Vol 112 (2) ◽  
pp. E214-E219 ◽  
Author(s):  
Liping Wang ◽  
Xianchun Li ◽  
Steven S. Hsiao ◽  
Fred A. Lenz ◽  
Mark Bodner ◽  
...  

Previous studies have shown that neurons of monkey dorsolateral prefrontal cortex (DLPFC) integrate information across modalities and maintain it throughout the delay period of working-memory (WM) tasks. However, the mechanisms of this temporal integration in the DLPFC are still poorly understood. In the present study, to further elucidate the role of the DLPFC in crossmodal WM, we trained monkeys to perform visuo–haptic (VH) crossmodal and haptic–haptic (HH) unimodal WM tasks. The neuronal activity recorded in the DLPFC in the delay period of both tasks indicates that the early-delay differential activity probably is related to the encoding of sample information with different strengths depending on task modality, that the late-delay differential activity reflects the associated (modality-independent) action component of haptic choice in both tasks (that is, the anticipation of the behavioral choice and/or active recall and maintenance of sample information for subsequent action), and that the sustained whole-delay differential activity likely bridges and integrates the sensory and action components. In addition, the VH late-delay differential activity was significantly diminished when the haptic choice was not required. Taken together, the results show that, in addition to the whole-delay differential activity, DLPFC neurons also show early- and late-delay differential activities. These previously unidentified findings indicate that DLPFC is capable of (i) holding the coded sample information (e.g., visual or tactile information) in the early-delay activity, (ii) retrieving the abstract information (orientations) of the sample (whether the sample has been haptic or visual) and holding it in the late-delay activity, and (iii) preparing for behavioral choice acting on that abstract information.


Sign in / Sign up

Export Citation Format

Share Document