scholarly journals WDR60-mediated dynein-2 loading into cilia powers retrograde IFT and transition zone crossing

2021 ◽  
Author(s):  
Ana R. G. De-Castro ◽  
Diogo R. M. Rodrigues ◽  
Maria J. G. De-Castro ◽  
Neide Vieira ◽  
Carmen Vieira ◽  
...  

The dynein-2 motor complex drives retrograde intraflagellar transport (IFT), playing a pivotal role in the assembly and functions of cilia. However, the mechanisms that regulate dynein-2 motility remain poorly understood. Here, we identify the Caenorhabditis elegans WDR60 homolog (WDR-60) and dissect the roles of this intermediate chain using genome editing and live imaging of endogenous dynein-2/IFT components. We find that loss of WDR-60 impairs dynein-2 recruitment to cilia and its incorporation onto anterograde IFT trains, reducing the availability of the retrograde motor at the ciliary tip. Consistently, we show that less dynein-2 motors power WDR-60-deficient retrograde IFT trains, which move at reduced velocities and fail to exit cilia, accumulating on the distal side of the transition zone. Remarkably, disrupting the transition zone's NPHP module almost fully restores ciliary exit of underpowered retrograde trains in wdr-60 mutants. This work establishes WDR-60 as a major contributor to IFT and the NPHP module as a roadblock to dynein-2 passage through the transition zone.

2015 ◽  
Vol 208 (6) ◽  
pp. 683-692 ◽  
Author(s):  
Wenjing Li ◽  
Peishan Yi ◽  
Guangshuo Ou

Cilium formation and maintenance require intraflagellar transport (IFT). Although much is known about kinesin-2–driven anterograde IFT, the composition and regulation of retrograde IFT-specific dynein remain elusive. Components of cytoplasmic dynein may participate in IFT; however, their essential roles in cell division preclude functional studies in postmitotic cilia. Here, we report that inducible expression of the clustered regularly interspaced short palindromic repeats (CRISPR)–Cas9 system in Caenorhabditis elegans generated conditional mutations in IFT motors and particles, recapitulating ciliary defects in their null mutants. Using this method to bypass the embryonic requirement, we show the following: the dynein intermediate chain, light chain LC8, and lissencephaly-1 regulate retrograde IFT; the dynein light intermediate chain functions in dendrites and indirectly contributes to ciliogenesis; and the Tctex and Roadblock light chains are dispensable for cilium assembly. Furthermore, we demonstrate that these components undergo biphasic IFT with distinct transport frequencies and turnaround behaviors. Together, our results suggest that IFT–dynein and cytoplasmic dynein have unique compositions but also share components and regulatory mechanisms.


2003 ◽  
Vol 14 (5) ◽  
pp. 2057-2070 ◽  
Author(s):  
Jenny C. Schafer ◽  
Courtney J. Haycraft ◽  
James H. Thomas ◽  
Bradley K. Yoder ◽  
Peter Swoboda

Intraflagellar transport (IFT) is a process required for flagella and cilia assembly that describes the dynein and kinesin mediated movement of particles along axonemes that consists of an A and a B complex, defects in which disrupt retrograde and anterograde transport, respectively. Herein, we describe a novel Caenorhabditis elegans gene, xbx-1, that is required for retrograde IFT and shares homology with a mammalian dynein light intermediate chain (D2LIC). xbx-1 expression in ciliated sensory neurons is regulated by the transcription factor DAF-19, as demonstrated previously for genes encoding IFT complex B proteins. XBX-1 localizes to the base of the cilia and undergoes anterograde and retrograde movement along the axoneme. Disruption of xbx-1 results in cilia defects and causes behavioral abnormalities observed in other cilia mutants. Analysis of cilia in xbx-1 mutants reveals that they are shortened and have a bulb like structure in which IFT proteins accumulate. The role of XBX-1 in IFT was further confirmed by analyzing the effect that other IFT mutations have on XBX-1 localization and movement. In contrast to other IFT proteins, retrograde XBX-1 movement was detected in complex A mutants. Our results suggest that the DLIC protein XBX-1 functions together with the CHE-3 dynein in retrograde IFT, downstream of the complex A proteins.


2021 ◽  
Author(s):  
Jeffrey C Medley ◽  
Shilpa Hebbar ◽  
Joel T Sydzyik ◽  
Anna Y. Zinovyeva

In Caenorhabditis elegans, germline injection of Cas9 complexes is reliably used to achieve genome editing through homology-directed repair of Cas9-generated DNA breaks. To prevent Cas9 from targeting repaired DNA, additional blocking mutations are often incorporated into homologous repair templates. Cas9 can be blocked either by mutating the PAM sequence that is essential for Cas9 activity or by mutating the guide sequence that targets Cas9 to a specific genomic location. However, it is unclear how many nucleotides within the guide sequence should be mutated, since Cas9 can recognize off-target sequences that are imperfectly paired to its guide. In this study, we examined whether single-nucleotide substitutions within the guide sequence are sufficient to block Cas9 and allow for efficient genome editing. We show that a single mismatch within the guide sequence effectively blocks Cas9 and allows for recovery of edited animals. Surprisingly, we found that a low rate of edited animals can be recovered without introducing any blocking mutations, suggesting a temporal block to Cas9 activity in C. elegans. Furthermore, we show that the maternal genome of hermaphrodite animals is preferentially edited over the paternal genome. We demonstrate that maternally provided haplotypes can be selected using balancer chromosomes and propose a method of mutant isolation that greatly reduces screening efforts post-injection. Collectively, our findings expand the repertoire of genome editing strategies in C. elegans and demonstrate that extraneous blocking mutations are not required to recover edited animals when the desired mutation is located within the guide sequence.


2008 ◽  
Vol 180 (5) ◽  
pp. 973-988 ◽  
Author(s):  
Andrew R. Jauregui ◽  
Ken C.Q. Nguyen ◽  
David H. Hall ◽  
Maureen M. Barr

Nephronophthisis (NPHP) is the most common genetic cause of end-stage renal disease in children and young adults. In Chlamydomonas reinhardtii, Caenorhabditis elegans, and mammals, the NPHP1 and NPHP4 gene products nephrocystin-1 and nephrocystin-4 localize to basal bodies or ciliary transition zones (TZs), but their function in this location remains unknown. We show here that loss of C. elegans NPHP-1 and NPHP-4 from TZs is tolerated in developing cilia but causes changes in localization of specific ciliary components and a broad range of subtle axonemal ultrastructural defects. In amphid channel cilia, nphp-4 mutations cause B tubule defects that further disrupt intraflagellar transport (IFT). We propose that NPHP-1 and NPHP-4 act globally at the TZ to regulate ciliary access of the IFT machinery, axonemal structural components, and signaling molecules, and that perturbing this balance results in cell type–specific phenotypes.


2013 ◽  
Vol 41 (20) ◽  
pp. e193-e193 ◽  
Author(s):  
Changchun Chen ◽  
Lorenz A. Fenk ◽  
Mario de Bono

Genetics ◽  
2018 ◽  
Vol 210 (3) ◽  
pp. 781-787 ◽  
Author(s):  
Gregoriy A. Dokshin ◽  
Krishna S. Ghanta ◽  
Katherine M. Piscopo ◽  
Craig C. Mello

2017 ◽  
Vol 216 (6) ◽  
pp. 1659-1671 ◽  
Author(s):  
Daniel Serwas ◽  
Tiffany Y. Su ◽  
Max Roessler ◽  
Shaohe Wang ◽  
Alexander Dammermann

Cilia are cellular projections that assemble on centriole-derived basal bodies. While cilia assembly is absolutely dependent on centrioles, it is not known to what extent they contribute to downstream events. The nematode C. elegans provides a unique opportunity to address this question, as centrioles do not persist at the base of mature cilia. Using fluorescence microscopy and electron tomography, we find that centrioles degenerate early during ciliogenesis. The transition zone and axoneme are not completely formed at this time, indicating that cilia maturation does not depend on intact centrioles. The hydrolethalus syndrome protein HYLS-1 is the only centriolar protein known to remain at the base of mature cilia and is required for intraflagellar transport trafficking. Surprisingly, targeted degradation of HYLS-1 after initiation of ciliogenesis does not affect ciliary structures. Taken together, our results indicate that while centrioles are essential to initiate cilia formation, they are dispensable for cilia maturation and maintenance.


Genetics ◽  
2014 ◽  
Vol 198 (4) ◽  
pp. 1347-1356 ◽  
Author(s):  
Alexandre Paix ◽  
Yuemeng Wang ◽  
Harold E. Smith ◽  
Chih-Yung S. Lee ◽  
Deepika Calidas ◽  
...  

2012 ◽  
Vol 102 (3) ◽  
pp. 377a-378a
Author(s):  
Bram Prevo ◽  
Pierre J.J. Mangeol ◽  
Jonathan M. Scholey ◽  
Erwin J.G. Peterman

Sign in / Sign up

Export Citation Format

Share Document