maternal genome
Recently Published Documents


TOTAL DOCUMENTS

79
(FIVE YEARS 30)

H-INDEX

16
(FIVE YEARS 1)

Genetics ◽  
2021 ◽  
Author(s):  
Jeffrey C Medley ◽  
Shilpa Hebbar ◽  
Joel T Sydzyik ◽  
Anna Y Zinovyeva

Abstract In Caenorhabditis elegans, germline injection of Cas9 complexes is reliably used to achieve genome editing through homology-directed repair of Cas9-generated DNA breaks. To prevent Cas9 from targeting repaired DNA, additional blocking mutations are often incorporated into homologous repair templates. Cas9 can be blocked either by mutating the PAM sequence that is essential for Cas9 activity or by mutating the guide sequence that targets Cas9 to a specific genomic location. However, it is unclear how many nucleotides within the guide sequence should be mutated, since Cas9 can recognize “off-target” sequences that are imperfectly paired to its guide. In this study, we examined whether single-nucleotide substitutions within the guide sequence are sufficient to block Cas9 and allow for efficient genome editing. We show that a single mismatch within the guide sequence effectively blocks Cas9 and allows for recovery of edited animals. Surprisingly, we found that a low rate of edited animals can be recovered without introducing any blocking mutations, suggesting a temporal block to Cas9 activity in C. elegans. Furthermore, we show that the maternal genome of hermaphrodite animals is preferentially edited over the paternal genome. We demonstrate that maternally provided haplotypes can be selected using balancer chromosomes and propose a method of mutant isolation that greatly reduces screening efforts post-injection. Collectively, our findings expand the repertoire of genome editing strategies in C. elegans and demonstrate that extraneous blocking mutations are not required to recover edited animals when the desired mutation is located within the guide sequence.


2021 ◽  
Vol 12 ◽  
Author(s):  
Fen Yang ◽  
Nadia Fernández Jiménez ◽  
Joanna Majka ◽  
Mónica Pradillo ◽  
Ales Pecinka

Polyploidization is a common phenomenon in the evolution of flowering plants. However, only a few genes controlling polyploid genome stability, fitness, and reproductive success are known. Here, we studied the effects of loss-of-function mutations in NSE2 and NSE4A subunits of the Structural Maintenance of Chromosomes 5/6 (SMC5/6) complex in autotetraploid Arabidopsis thaliana plants. The diploid nse2 and nse4a plants show partially reduced fertility and produce about 10% triploid offspring with two paternal and one maternal genome copies. In contrast, the autotetraploid nse2 and nse4a plants were almost sterile and produced hexaploid and aneuploid progeny with the extra genome copies or chromosomes coming from both parents. In addition, tetraploid mutants had more severe meiotic defects, possibly due to the presence of four homologous chromosomes instead of two. Overall, our study suggests that the SMC5/6 complex is an important player in the maintenance of tetraploid genome stability and that autotetraploid Arabidopsis plants have a generally higher frequency of but also higher tolerance for aneuploidy compared to diploids.


2021 ◽  
Author(s):  
Jeffrey C Medley ◽  
Shilpa Hebbar ◽  
Joel T Sydzyik ◽  
Anna Y. Zinovyeva

In Caenorhabditis elegans, germline injection of Cas9 complexes is reliably used to achieve genome editing through homology-directed repair of Cas9-generated DNA breaks. To prevent Cas9 from targeting repaired DNA, additional blocking mutations are often incorporated into homologous repair templates. Cas9 can be blocked either by mutating the PAM sequence that is essential for Cas9 activity or by mutating the guide sequence that targets Cas9 to a specific genomic location. However, it is unclear how many nucleotides within the guide sequence should be mutated, since Cas9 can recognize off-target sequences that are imperfectly paired to its guide. In this study, we examined whether single-nucleotide substitutions within the guide sequence are sufficient to block Cas9 and allow for efficient genome editing. We show that a single mismatch within the guide sequence effectively blocks Cas9 and allows for recovery of edited animals. Surprisingly, we found that a low rate of edited animals can be recovered without introducing any blocking mutations, suggesting a temporal block to Cas9 activity in C. elegans. Furthermore, we show that the maternal genome of hermaphrodite animals is preferentially edited over the paternal genome. We demonstrate that maternally provided haplotypes can be selected using balancer chromosomes and propose a method of mutant isolation that greatly reduces screening efforts post-injection. Collectively, our findings expand the repertoire of genome editing strategies in C. elegans and demonstrate that extraneous blocking mutations are not required to recover edited animals when the desired mutation is located within the guide sequence.


2021 ◽  
Author(s):  
Ruijuan Liu ◽  
Mingze Xia ◽  
Demei Liu ◽  
Liling Jiang ◽  
Jicheng Shen ◽  
...  

2021 ◽  
Vol 81 (07) ◽  
pp. 780-788
Author(s):  
Thomas Eggermann

AbstractGenetic alterations significantly contribute to the aetiology of reproductive failure and comprise monogenic, chromosomal and epigenetic disturbances. The implementation of next-generation sequencing (NGS) based approaches in research and diagnostics allows the comprehensive analysis of these genetic causes, and the increasing detection rates of genetic mutations causing reproductive complications confirm the potential of the new techniques. Whereas mutations affecting the fetal genome are well known to affect pregnancies and their outcome, the contribution of alterations of the maternal genome was widely unclear. With the recent mainly NGS-based identification of maternal effect variants, a new cause of human reproductive failure has been identified. Maternal effect mutations affect the expression of subcortical maternal complex (SCMC) proteins from the maternal genome, and thereby disturb oocyte maturation and progression of the early embryo. They cause a broad range of reproductive failures and pregnancy complications, including infertility, miscarriages, hydatidiform moles, aneuploidies and imprinting disturbances in the fetus. The identification of women carrying these molecular alterations in SCMC encoding genes is therefore essential for a personalised reproductive and genetic counselling. The diagnostic application of new NGS-based assays allows the comprehensive analysis of these factors, and helps to further decipher these functional links between the factors and their disturbances. A close interdisciplinary collaboration between different disciplines is definitely required to further decipher the complex regulation of early embryo development, and to translate the basic research results into clinical practice.


2021 ◽  
Author(s):  
David Jukam ◽  
Rishabh Kapoor ◽  
Aaron F Straight ◽  
Jan Skotheim

In multicellular animals, the first major event after fertilization is the switch from maternal to zygotic control of development. During this transition, zygotic gene transcription is broadly activated in an otherwise quiescent genome in a process known as zygotic genome activation (ZGA). In fast developing embryos, ZGA often overlaps with the slowing of initially synchronous cell divisions at the mid-blastula transition (MBT). Initial studies of the MBT led to the nuclear-to-cytoplasmic ratio model where MBT timing is regulated by the exponentially increasing amounts of some nuclear component N titrated against a fixed cytoplasmic component C. However, more recent experiments have been interpreted to suggest that ZGA is independent of the N/C ratio. To determine the role of the N/C ratio in ZGA, we generated Xenopus frog embryos with ~3-fold differences in genomic DNA (i.e., N) by using X. tropicalis sperm to fertilize X. laevis eggs with or without their maternal genome. Resulting embryos have otherwise identical X. tropicalis genome template amounts, embryo sizes, and X. laevis maternal environments. We used the X. tropicalis paternally derived mRNA to identify a high confidence set of exclusively zygotic transcripts. Both ZGA and the increase in cell cycle duration are delayed in embryos with ~3-fold less DNA per cell. Thus, DNA is an important component of the N/C ratio, which is indeed a critical regulator of zygotic genome activation in Xenopus embryos.


Author(s):  
Andrés G de la Filia ◽  
Andrew J Mongue ◽  
Jennifer Dorrens ◽  
Hannah Lemon ◽  
Dominik R Laetsch ◽  
...  

AbstractGenetic conflict is considered a key driver in the evolution of reproductive systems with non-Mendelian inheritance, where parents do not contribute equally to the genetic makeup of their offspring. One of the most extraordinary examples of non-Mendelian inheritance is paternal genome elimination (PGE), a form of haplodiploidy which has evolved repeatedly across arthropods. Under PGE, males are diploid but only transmit maternally inherited chromosomes, while the paternally inherited homologues are excluded from sperm. This asymmetric inheritance is thought to have evolved through an evolutionary arms race between the paternal and maternal genomes over transmission to future generations. In several PGE clades, such as the mealybugs (Hemiptera: Pseudococcidae), paternal chromosomes are not only eliminated from sperm, but also heterochromatinized early in development and thought to remain inactive, which could result from genetic conflict between parental genomes. Here, we present a parent-of-origin allele-specific transcriptome analysis in male mealybugs showing that expression is globally biased toward the maternal genome. However, up to 70% of somatically expressed genes are to some degree paternally expressed, while paternal genome expression is much more restricted in the male reproductive tract, with only 20% of genes showing paternal contribution. We also show that parent-of-origin-specific gene expression patterns are remarkably similar across genotypes, and that genes with completely biparental expression show elevated rates of molecular evolution. Our results provide the clearest example yet of genome-wide genomic imprinting in insects and enhance our understanding of PGE, which will aid future empirical tests of evolutionary theory regarding the origin of this unusual reproductive strategy.


2021 ◽  
Author(s):  
Qian-Qian Sha ◽  
Ye-Zhang Zhu ◽  
Yunlong Xiang ◽  
Jia-Li Yu ◽  
Xiao-Ying Fan ◽  
...  

Abstract During oogenesis, oocytes gain competence and subsequently undergo meiotic maturation and prepare for embryonic development; trimethylated histone H3 on lysine-4 (H3K4me3) mediates a wide range of nuclear events during these processes. Oocyte-specific knockout of CxxC-finger protein 1 (CXXC1, also known as CFP1) impairs H3K4me3 accumulation and causes changes in chromatin configurations. This study investigated the changes in genomic H3K4me3 landscapes in oocytes with Cxxc1 knockout and the effects on other epigenetic factors such as the DNA methylation, H3K27me3, H2AK119ub1 and H3K36me3. H3K4me3 is overall decreased after knocking out Cxxc1, including both the promoter region and the gene body. CXXC1 and MLL2, which is another histone H3 methyltransferase, have nonoverlapping roles in mediating H3K4 trimethylation during oogenesis. Cxxc1 deletion caused a decrease in DNA methylation levels and affected H3K27me3 and H2AK119ub1 distributions, particularly at regions with high DNA methylation levels. The changes in epigenetic networks implicated by Cxxc1 deletion were correlated with the transcriptional changes in genes in the corresponding genomic regions. This study elucidates the epigenetic changes underlying the phenotypes and molecular defects in oocytes with deleted Cxxc1 and highlights the role of CXXC1 in orchestrating multiple factors that are involved in establishing the appropriate epigenetic states of maternal genome.


Turczaninowia ◽  
2020 ◽  
Vol 23 (4) ◽  
pp. 99-110
Author(s):  
Elena M. Arnautova ◽  
Nikolay N. Nosov ◽  
Alexander I. Shmakov ◽  
Alexander V. Rodionov

In this article, we compare the phylogenetic position of various specimens of the Japanese banana (Musa basjoo) originating from the greenhouses of the St. Petersburg Botanical Garden of Peter the Great and from the Kyoto Garden using the analysis of marker sequences ITS1–5.8S rRNA–ITS2 and trnL–trnF. Samples of M. basjoo grown in the Peter the Great Botanical Garden originate from China and have some morphological differences from typical Japanese ones. In addition, we used sequences from the international GenBank database. According to the results of the analysis of ITS sequences, the M. basjoo samples form a single clade with M. itinerans and M. tonkinensis, possibly corresponding to the subsection in the section Musa. At the same time, M. basjoo from Peter the Great Botanical Garden differs in the primary sequence of the ITS1–5.8S rRNA–ITS2 from Japanese one forming a lowly supported clade with M. tonkinensis. Two M. basjoo samples collected in China, whose sequences are taken from the GenBank database, fall into a separate subclade within M. basjoo clade, possibly being a special species from this affinity group. According to the trnL–trnF chloroplast sequences, most of the M. basjoo samples also fall into the clade with M. itinerans. However, one M. basjoo specimen from the Genbank database is monophyletic with M. acuminata from a completely different clade. Possibly, the affinity group of M. basjoo is a compound hybrid complex containing plants that differ in the composition of the maternal genome.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Ji Liao ◽  
Piroska E. Szabó

AbstractA battery of chromatin modifying enzymes play essential roles in remodeling the epigenome in the zygote and cleavage stage embryos, when the maternal genome is the sole contributor. Here we identify an exemption. DOT1L methylates lysine 79 in the globular domain of histone H3 (H3K79). Dot1l is an essential gene, as homozygous null mutant mouse embryos exhibit multiple developmental abnormalities and die before 11.5 days of gestation. To test if maternally deposited DOT1L is required for embryo development, we carried out a conditional Dot1l knockout in growing oocytes using the Zona pellucida 3-Cre (Zp3-Cre) transgenic mice. We found that the resulting maternal mutant Dot1lmat−/+ offspring displayed normal development and fertility, suggesting that the expression of the paternally inherited copy of Dot1l in the embryo is sufficient to support development. In addition, Dot1l maternal deletion did not affect the parental allele-specific expression of imprinted genes, indicating that DOT1L is not needed for imprint establishment in the oocyte or imprint protection in the zygote. In summary, uniquely and as opposed to other histone methyltransferases and histone marks, maternal DOT1L deposition and H3K79 methylation in the zygote and in the preimplantation stage embryo is dispensable for mouse development.


Sign in / Sign up

Export Citation Format

Share Document