scholarly journals easyfm : An easy software suite for file manipulation of Next Generation Sequencing data on desktops

2021 ◽  
Author(s):  
Hyungtaek Jung ◽  
Brendan Jeon ◽  
Daniel Ortiz-Barrientos

Storing and manipulating Next Generation Sequencing (NGS) file formats is an essential but difficult task in biological data analysis. The easyfm ( easy f ile m anipulation) toolkit ( https://github.com/TaekAndBrendan/easyfm ) makes manipulating commonly used NGS files more accessible to biologists. It enables them to perform end-to-end reproducible data analyses using a free standalone desktop application (available on Windows, Mac and Linux). Unlike existing tools (e.g. Galaxy), the Graphical User Interface (GUI)-based easyfm is not dependent on any high-performance computing (HPC) system and can be operated without an internet connection. This specific benefit allow easyfm to seamlessly integrate visual and interactive representations of NGS files, supporting a wider scope of bioinformatics applications in the life sciences.

2015 ◽  
Vol 9 ◽  
pp. BBI.S12462 ◽  
Author(s):  
Anastasis Oulas ◽  
Christina Pavloudi ◽  
Paraskevi Polymenakou ◽  
Georgios A. Pavlopoulos ◽  
Nikolas Papanikolaou ◽  
...  

Advances in next-generation sequencing (NGS) have allowed significant breakthroughs in microbial ecology studies. This has led to the rapid expansion of research in the field and the establishment of “metagenomics”, often defined as the analysis of DNA from microbial communities in environmental samples without prior need for culturing. Many metagenomics statistical/computational tools and databases have been developed in order to allow the exploitation of the huge influx of data. In this review article, we provide an overview of the sequencing technologies and how they are uniquely suited to various types of metagenomic studies. We focus on the currently available bioinformatics techniques, tools, and methodologies for performing each individual step of a typical metagenomic dataset analysis. We also provide future trends in the field with respect to tools and technologies currently under development. Moreover, we discuss data management, distribution, and integration tools that are capable of performing comparative metagenomic analyses of multiple datasets using well-established databases, as well as commonly used annotation standards.


Algorithms ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 151
Author(s):  
Bruno Carpentieri

The increase in memory and in network traffic used and caused by new sequenced biological data has recently deeply grown. Genomic projects such as HapMap and 1000 Genomes have contributed to the very large rise of databases and network traffic related to genomic data and to the development of new efficient technologies. The large-scale sequencing of samples of DNA has brought new attention and produced new research, and thus the interest in the scientific community for genomic data has greatly increased. In a very short time, researchers have developed hardware tools, analysis software, algorithms, private databases, and infrastructures to support the research in genomics. In this paper, we analyze different approaches for compressing digital files generated by Next-Generation Sequencing tools containing nucleotide sequences, and we discuss and evaluate the compression performance of generic compression algorithms by confronting them with a specific system designed by Jones et al. specifically for genomic file compression: Quip. Moreover, we present a simple but effective technique for the compression of DNA sequences in which we only consider the relevant DNA data and experimentally evaluate its performances.


2015 ◽  
Vol 114 (11) ◽  
pp. 920-932 ◽  
Author(s):  
Joost C. M. Meijers ◽  
Saskia Middeldorp ◽  
Marisa L. R. Cunha

SummaryDespite knowledge of various inherited risk factors associated with venous thromboembolism (VTE), no definite cause can be found in about 50% of patients. The application of data-driven searches such as GWAS has not been able to identify genetic variants with implications for clinical care, and unexplained heritability remains. In the past years, the development of several so-called next generation sequencing (NGS) platforms is offering the possibility of generating fast, inexpensive and accurate genomic information. However, so far their application to VTE has been very limited. Here we review basic concepts of NGS data analysis and explore the application of NGS technology to VTE. We provide both computational and biological viewpoints to discuss potentials and challenges of NGS-based studies.


PLoS ONE ◽  
2014 ◽  
Vol 9 (6) ◽  
pp. e99033 ◽  
Author(s):  
Luis Santana-Quintero ◽  
Hayley Dingerdissen ◽  
Jean Thierry-Mieg ◽  
Raja Mazumder ◽  
Vahan Simonyan

2018 ◽  
Author(s):  
A Iacoangeli ◽  
A Al Khleifat ◽  
W Sproviero ◽  
A Shatunov ◽  
AR Jones ◽  
...  

AbstractThe generation of DNA Next Generation Sequencing (NGS) data is a commonly applied approach for studying the genetic basis of biological processes, including diseases, and underpins the aspirations of precision medicine. However, there are significant challenges when dealing with NGS data. A huge number of bioinformatics tools exist and it is therefore challenging to design an analysis pipeline; NGS analysis is computationally intensive, requiring expensive infrastructure which can be problematic given that many medical and research centres do not have adequate high performance computing facilities and the use of cloud computing facilities is not always possible due to privacy and ownership issues. We have therefore developed a fast and efficient bioinformatics pipeline that allows for the analysis of DNA sequencing data, while requiring little computational effort and memory usage. We achieved this by exploiting state-of-the-art bioinformatics tools. DNAscan can analyse raw, 40x whole genome NGS data in 8 hours, using as little as 8 threads and 16 Gbs of RAM, while guaranteeing a high performance. DNAscan can look for SNVs, small indels, SVs, repeat expansions and viral genetic material (or any other organism). Its results are annotated using a customisable variety of databases including ClinVar, Exac and dbSNP, and a local deployment of the gene.iobio platform is available for an on-the-fly result visualisation.


2020 ◽  
Vol 10 (1) ◽  
pp. 34
Author(s):  
Alireza Tafazoli ◽  
Natalia Wawrusiewicz-Kurylonek ◽  
Renata Posmyk ◽  
Wojciech Miltyk

Pharmacogenomics (PGx) is the knowledge of diverse drug responses and effects in people, based on their genomic profiles. Such information is considered as one of the main directions to reach personalized medicine in future clinical practices. Since the start of applying next generation sequencing (NGS) methods in drug related clinical investigations, many common medicines found their genetic data for the related metabolizing/shipping proteins in the human body. Yet, the employing of technology is accompanied by big obtained data, which most of them have no clear guidelines for consideration in routine treatment decisions for patients. This review article talks about different types of NGS derived PGx variants in clinical studies and try to display the current and newly developed approaches to deal with pharmacogenetic data with/without clear guidelines for considering in clinical settings.


Author(s):  
Anne Krogh Nøhr ◽  
Kristian Hanghøj ◽  
Genis Garcia Erill ◽  
Zilong Li ◽  
Ida Moltke ◽  
...  

Abstract Estimation of relatedness between pairs of individuals is important in many genetic research areas. When estimating relatedness, it is important to account for admixture if this is present. However, the methods that can account for admixture are all based on genotype data as input, which is a problem for low-depth next-generation sequencing (NGS) data from which genotypes are called with high uncertainty. Here we present a software tool, NGSremix, for maximum likelihood estimation of relatedness between pairs of admixed individuals from low-depth NGS data, which takes the uncertainty of the genotypes into account via genotype likelihoods. Using both simulated and real NGS data for admixed individuals with an average depth of 4x or below we show that our method works well and clearly outperforms all the commonly used state-of-the-art relatedness estimation methods PLINK, KING, relateAdmix, and ngsRelate that all perform quite poorly. Hence, NGSremix is a useful new tool for estimating relatedness in admixed populations from low-depth NGS data. NGSremix is implemented in C/C ++ in a multi-threaded software and is freely available on Github https://github.com/KHanghoj/NGSremix.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Panagiotis Moulos

Abstract Background The relentless continuing emergence of new genomic sequencing protocols and the resulting generation of ever larger datasets continue to challenge the meaningful summarization and visualization of the underlying signal generated to answer important qualitative and quantitative biological questions. As a result, the need for novel software able to reliably produce quick, comprehensive, and easily repeatable genomic signal visualizations in a user-friendly manner is rapidly re-emerging. Results recoup is a Bioconductor package for quick, flexible, versatile, and accurate visualization of genomic coverage profiles generated from Next Generation Sequencing data. Coupled with a database of precalculated genomic regions for multiple organisms, recoup offers processing mechanisms for quick, efficient, and multi-level data interrogation with minimal effort, while at the same time creating publication-quality visualizations. Special focus is given on plot reusability, reproducibility, and real-time exploration and formatting options, operations rarely supported in similar visualization tools in a profound way. recoup was assessed using several qualitative user metrics and found to balance the tradeoff between important package features, including speed, visualization quality, overall friendliness, and the reusability of the results with minimal additional calculations. Conclusion While some existing solutions for the comprehensive visualization of NGS data signal offer satisfying results, they are often compromised regarding issues such as effortless tracking of processing and preparation steps under a common computational environment, visualization quality and user friendliness. recoup is a unique package presenting a balanced tradeoff for a combination of assessment criteria while remaining fast and friendly.


Sign in / Sign up

Export Citation Format

Share Document