scholarly journals Pioglitazone administration restores a PPARG-dependent transcriptional network and ATP levels within skeletal muscles of mice implanted with patient-derived breast tumors

2021 ◽  
Author(s):  
David A. Stanton ◽  
Hannah E. Wilson ◽  
Matthew G. Chapa ◽  
Jessica N. Link ◽  
Werner Geldenhuys ◽  
...  

AbstractBackgroundFatigue is common in patents with breast cancer (BC), and can occur in patients with early stage disease and in the absence of muscle wasting (i.e. cachexia). We have reported transcriptional and proteomic alterations in muscles from BC patients, which are associated with fatigue. Mice implanted with human BC xenografts recapitulate the muscle molecular composition changes seen in patients, coupled with a greater rate of contraction-induced fatigue. Multiple bioinformatics platforms in both human and mouse muscles have identified peroxisome proliferator activated receptor gamma (PPARG) as central to this phenotype, with multiple PPARG target genes downregulated in response to tumor growth. The current study tested the hypothesis that the PPARG agonist pioglitazone (pio), a commonly prescribed diabetes drug, would rescue the transcriptional alterations observed in muscles of tumor-bearing mice.MethodsSixteen female NSG mice were implanted with breast cancer patient-derived orthotopic xenografts (BC-PDOX) via transplantation of Her2/neu+ human tumor fragments. BC-PDOX mice were randomly assigned to a treatment group that received daily oral pio at 30 mg.kg-1 (n=8), or a control group that received a similar volume of vehicle (n=8). Treatment was initiated when tumors reached a volume of 600mm3, and lasted for 2-weeks. Hindlimb muscles were isolated from BC-PDOX and non-tumor bearing mice for RNA-sequencing, gene expression validation, and ATP quantification. Differentially expressed genes (DEGs) in muscles from BC-PDOX mice relative to non-tumor bearing controls were identified using DESeq2, and multiple bioinformatics platforms were employed to contextualize the DEGs.ResultsWe found that the administration of pio restored the muscle gene expression patterns of BC-PDOX mice to a profile resembling muscles of non-tumor bearing NSG control mice. Validation of skeletal muscle gene expression by qPCR confirmed pio increased the expression of PPARG target genes in skeletal muscles. Isolated mitochondria from muscles of BC-PDOX mice treated with pio contained greater levels of ATP. There were no differences in body weights, muscle weights, or tumor volumes in pio vs. vehicle treated BC-PDOX mice.ConclusionsThese data demonstrate that oral pio supplementation rescues the BC-associated downregulation of PPARG target genes in skeletal muscle. Additionally, muscles from BC-PDOX mice treated with pio had greater levels of ATP, which would be associated a more fatigue-resistant muscle phenotype. Therefore, we propose that the FDA-approved and generic diabetes drug, pio, be considered as a supportive therapy for the treatment of BC-associated muscle fatigue.

2004 ◽  
Vol 18 (3) ◽  
pp. 522-524 ◽  
Author(s):  
Takeshi Nikawa ◽  
Kazumi Ishidoh ◽  
Katsuya Hirasaka ◽  
Ibuki Ishihara ◽  
Madoka Ikemoto ◽  
...  

2010 ◽  
Vol 88 (4) ◽  
pp. 1349-1357 ◽  
Author(s):  
D. K. Walker ◽  
E. C. Titgemeyer ◽  
T. J. Baxa ◽  
K. Y. Chung ◽  
D. E. Johnson ◽  
...  

BMC Genetics ◽  
2018 ◽  
Vol 19 (1) ◽  
Author(s):  
I-Hsuan Lin ◽  
Junn-Liang Chang ◽  
Kate Hua ◽  
Wan-Chen Huang ◽  
Ming-Ta Hsu ◽  
...  

Author(s):  
Ferdinand von Walden ◽  
Rodrigo Fernandez-Gonzalo ◽  
Jessica Maria Norrbom ◽  
Eric B. Emanuelsson ◽  
Vandre C. Figueiredo ◽  
...  

Mitochondrial derived peptides (MDPs) humanin (HN) and mitochondrial open reading frame of the 12S rRNA-c (MOTS-c) are involved in cell survival, suppression of apoptosis and metabolism. Circulating levels of MDPs are altered in chronic diseases such as diabetes type 2 and chronic kidney disease. Whether acute resistance (RE) or endurance (EE) exercise modulates circulating levels of HN and MOTS-c in humans is unknown. Following familiarization, subjects were randomized to EE (n=10, 45 min cycling at 70% of estimated VO2max), RE (n=10, 4 sets x 7RM, leg press and knee extension), or control (CON, n=10). Skeletal muscle biopsies and blood samples were collected before and at 30 minutes and 3 hours following exercise. Plasma concentration of HN and MOTS-c, skeletal muscle MOTS-c as well as gene expression of exercise related genes were analyzed. Acute EE and RE promoted changes in skeletal muscle gene expression typically seen in response to each exercise modality (c-Myc, 45S pre-rRNA, PGC-1α-total and PGC-1α-ex1b). At rest, circulating levels of HN were positively correlated to MOTS-c levels and age. Plasma levels of MDPs were not correlated to fitness outcomes (VO2max, leg strength or muscle mitochondrial (mt) DNA copy number). Circulating levels of HN were significantly elevated by acute EE but not RE. MOTS-C levels showed a trend to increase after EE. These results indicate that plasma MDP levels are not related to fitness status but that acute EE increases circulating levels of MDPs, in particular HN.


2018 ◽  
Vol 50 (5S) ◽  
pp. 115
Author(s):  
Adam Osmond ◽  
Robert J. Talmadge ◽  
Katie E. Bathgate ◽  
James R. Bagley ◽  
Lee E. Brown ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document