Structural basis of mitochondrial protein import by the TIM complex

2021 ◽  
Author(s):  
Sue Im Sim ◽  
Yuanyuan Chen ◽  
Eunyong Park

Mitochondria import nearly all their ~1,000-2,000 constituent proteins from the cytosol across their double membrane envelope. Genetic and biochemical studies have shown that the conserved protein translocase, termed the TIM complex (also known as TIM23 complex), mediates import of presequence-containing proteins into the mitochondrial matrix and inner membrane. Among ~10 different subunits of the complex, the essential multi-pass membrane protein Tim23, together with the evolutionarily related protein Tim17, has long been postulated to form a protein-conducting channel. However, the mechanism of TIM-mediated protein import remains uncertain due to a lack of structural information on the complex. Here, we have determined the cryo-EM structure of the core TIM complex (Tim17-Tim23-Tim44) from Saccharomyces cerevisiae. We show that, contrary to the prevailing model, Tim23 and Tim17 do not form a water-filled channel, but instead have separate, lipid-exposed concave cavities that face in opposite directions. Remarkably, our data suggest that the cavity of Tim17 itself forms the protein translocation path whereas Tim23 plays a structural role. We also show how the Tim17-Tim23 heterodimer associates with the scaffold protein Tim44 and J-domain proteins to mediate Hsp70-driven polypeptide transport into the matrix. Our work provides the structural foundation to understand the mechanism of TIM-mediated protein import and sorting, a central pathway in mitochondrial biogenesis.

2009 ◽  
Vol 184 (1) ◽  
pp. 129-141 ◽  
Author(s):  
Yasushi Tamura ◽  
Yoshihiro Harada ◽  
Takuya Shiota ◽  
Koji Yamano ◽  
Kazuaki Watanabe ◽  
...  

Mitochondrial protein traffic requires coordinated operation of protein translocator complexes in the mitochondrial membrane. The TIM23 complex translocates and inserts proteins into the mitochondrial inner membrane. Here we analyze the intermembrane space (IMS) domains of Tim23 and Tim50, which are essential subunits of the TIM23 complex, in these functions. We find that interactions of Tim23 and Tim50 in the IMS facilitate transfer of precursor proteins from the TOM40 complex, a general protein translocator in the outer membrane, to the TIM23 complex. Tim23–Tim50 interactions also facilitate a late step of protein translocation across the inner membrane by promoting motor functions of mitochondrial Hsp70 in the matrix. Therefore, the Tim23–Tim50 pair coordinates the actions of the TOM40 and TIM23 complexes together with motor proteins for mitochondrial protein import.


2016 ◽  
Vol 214 (4) ◽  
pp. 417-431 ◽  
Author(s):  
Ajay Ramesh ◽  
Valentina Peleh ◽  
Sonia Martinez-Caballero ◽  
Florian Wollweber ◽  
Frederik Sommer ◽  
...  

Tim17 is a central, membrane-embedded subunit of the mitochondrial protein import machinery. In this study, we show that Tim17 contains a pair of highly conserved cysteine residues that form a structural disulfide bond exposed to the intermembrane space (IMS). This disulfide bond is critical for efficient protein translocation through the TIM23 complex and for dynamic gating of its preprotein-conducting channel. The disulfide bond in Tim17 is formed during insertion of the protein into the inner membrane. Whereas the import of Tim17 depends on the binding to the IMS protein Mia40, the oxidoreductase activity of Mia40 is surprisingly dispensable for Tim17 oxidation. Our observations suggest that Tim17 can be directly oxidized by the sulfhydryl oxidase Erv1. Thus, import and oxidation of Tim17 are mediated by the mitochondrial disulfide relay, though the mechanism by which the disulfide bond in Tim17 is formed differs considerably from that of soluble IMS proteins.


Cell ◽  
2000 ◽  
Vol 100 (5) ◽  
pp. 551-560 ◽  
Author(s):  
Yoshito Abe ◽  
Toshihiro Shodai ◽  
Takanori Muto ◽  
Katsuyoshi Mihara ◽  
Hisayoshi Torii ◽  
...  

1997 ◽  
Vol 272 (6) ◽  
pp. H2983-H2988 ◽  
Author(s):  
E. E. Craig ◽  
D. A. Hood

This study was undertaken to determine whether age-related changes in the content and composition of cardiac mitochondria could be due, in part, to alterations in mitochondrial protein import. Precursor proteins malate dehydrogenase and ornithine carbamoyltransferase were synthesized by in vitro transcription and translation and were incubated with mitochondria isolated from the hearts of young (4-mo), old (22-mo), and senescent (28-mo) rats. Mitochondria from senescent animals exhibited a twofold higher import rate of both precursors into the matrix compartment compared with mitochondria from young and old animals. The expression of glucose regulated protein 75 and heat shock protein 60, two matrix chaperonins that are essential for import, was elevated in the mitochondria of both old and senescent animals before the observed changes in import. Import was equally affected in senescent and young heart mitochondria by inhibition of cardiolipin, a mitochondrial phospholipid involved in protein translocation. The results indicate that the altered mitochondrial phenotype evident in the aging myocardium cannot be accounted for by reduced rates of protein import. Furthermore, levels of cardiolipin and matrix chaperonins do not appear to be rate-limiting steps in the import process. These data suggest that the protein import step of mitochondrial assembly is subject to adaptations under pathophysiological conditions.


2004 ◽  
Vol 63 (2) ◽  
pp. 293-300 ◽  
Author(s):  
David A. Hood ◽  
Anna-Maria Joseph

The protein import process of mitochondria is vital for the assembly of the hundreds of nuclear-derived proteins into an expanding organelle reticulum. Most of our knowledge of this complex multisubunit network comes from studies of yeast and fungal systems, with little information known about the protein import process in mammalian cells, particularly skeletal muscle. However, growing evidence indicates that the protein import machinery can respond to changes in the energy status of the cell. In particular, contractile activity, a powerful inducer of mitochondrial biogenesis, has been shown to alter the stoichiometry of the protein import apparatus via changes in several protein import machinery components. These adaptations include the induction of cytosolic molecular chaperones that transport precursors to the matrix, the up-regulation of outer membrane import receptors, and the increase in matrix chaperonins that facilitate the import and proper folding of the protein for subsequent compartmentation in the matrix or inner membrane. The physiological importance of these changes is an increased capacity for import into the organelle at any given precursor concentration. Defects in the protein import machinery components have been associated with mitochondrial disorders. Thus, contractile activity may serve as a possible mechanism for up-regulation of mitochondrial protein import and compensation for mitochondrial phenotype alterations observed in diseased muscle.


2004 ◽  
Vol 279 (44) ◽  
pp. 45701-45707 ◽  
Author(s):  
Masatoshi Esaki ◽  
Hidaka Shimizu ◽  
Tomoko Ono ◽  
Hayashi Yamamoto ◽  
Takashi Kanamori ◽  
...  

Protein translocation across the outer mitochondrial membrane is mediated by the translocator called the TOM (translocase of the outer mitochondrial membrane) complex. The TOM complex possesses two presequence binding sites on the cytosolic side (thecissite) and on the intermembrane space side (thetranssite). Here we analyzed the requirement of presequence elements and subunits of the TOM complex for presequence binding to thecisandtranssites of the TOM complex. The N-terminal 14 residues of the presequence of subunit 9 of F0-ATPase are required for binding to thetranssite. The interaction between the presequence and thecissite is not sufficient to anchor the precursor protein to the TOM complex. Tom7 constitutes or is close to thetranssite and has overlapping functions with the C-terminal intermembrane space domain of Tom22 in the mitochondrial protein import.


2016 ◽  
Vol 214 (4) ◽  
pp. 363-365 ◽  
Author(s):  
Dejana Mokranjac

Most mitochondrial proteins are imported through the TIM23 translocation channel, the structure and molecular nature of which are still unclear. In this issue, Ramesh et al. (2016. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201602074) show that the TIM23 subunit Tim17 contains a disulfide bond that is crucial for protein translocation and channel gating.


1998 ◽  
Vol 274 (5) ◽  
pp. C1380-C1387 ◽  
Author(s):  
Mark Takahashi ◽  
Alan Chesley ◽  
Damien Freyssenet ◽  
David A. Hood

We previously demonstrated that subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondrial subfractions import proteins at different rates. This study was undertaken to investigate 1) whether protein import is altered by chronic contractile activity, which induces mitochondrial biogenesis, and 2) whether these two subfractions adapt similarly. Using electrical stimulation (10 Hz, 3 h/day for 7 and 14 days) to induce contractile activity, we observed that malate dehydrogenase import into the matrix of the SS and IMF mitochondia isolated from stimulated muscle was significantly increased by 1.4- to 1.7-fold, although the pattern of increase differed for each subfraction. This acceleration of import may be mitochondrial compartment specific, since the import of Bcl-2 into the outer membrane was not affected. Contractile activity also modified the mitochondrial content of proteins comprising the import machinery, as evident from increases in the levels of the intramitochondrial chaperone mtHSP70 as well as the outer membrane import receptor Tom20 in SS and IMF mitochondria. Addition of cytosol isolated from stimulated or control muscles to the import reaction resulted in similar twofold increases in the ability of mitochondria to import malate dehydrogenase, despite elevations in the concentration of mitochondrial import-stimulating factor within the cytosol of chronically stimulated muscle. These results suggest that chronic contractile activity modifies the extra- and intramitochondrial environments in a fashion that favors the acceleration of precursor protein import into the matrix of the organelle. This increase in protein import is likely an important adaptation in the overall process of mitochondrial biogenesis.


1998 ◽  
Vol 9 (9) ◽  
pp. 2577-2593 ◽  
Author(s):  
Alison J. Davis ◽  
Kathleen R. Ryan ◽  
Robert E. Jensen

The Tim23 protein is an essential inner membrane (IM) component of the yeast mitochondrial protein import pathway. Tim23p does not carry an amino-terminal presequence; therefore, the targeting information resides within the mature protein. Tim23p is anchored in the IM via four transmembrane segments and has two positively charged loops facing the matrix. To identify the import signal for Tim23p, we have constructed several altered versions of the Tim23 protein and examined their function and import in yeast cells, as well as their import into isolated mitochondria. We replaced the positively charged amino acids in one or both loops with alanine residues and found that the positive charges are not required for import into mitochondria, but at least one positively charged loop is required for insertion into the IM. Furthermore, we find that the signal to target Tim23p to mitochondria is carried in at least two of the hydrophobic transmembrane segments. Our results suggest that Tim23p contains separate import signals: hydrophobic segments for targeting Tim23p to mitochondria, and positively charged loops for insertion into the IM. We therefore propose that Tim23p is imported into mitochondria in at least two distinct steps.


Sign in / Sign up

Export Citation Format

Share Document