scholarly journals Enhanced metanephric specification to functional proximal tubule enables toxicity screening and infectious disease modelling in kidney organoids

2021 ◽  
Author(s):  
Jessica M Vanslambrouck ◽  
Sean B Wilson ◽  
Ker Sin Tan ◽  
Ella Groenewegen ◽  
Rajeev Rudraraju ◽  
...  

While pluripotent stem cell-derived kidney organoids represent a promising approach for the study of renal disease, renal physiology and drug screening, the proximal nephron remains immature with limited evidence for key functional solute channels. This may reflect early mispatterning of the nephrogenic mesenchyme or insufficient maturation. In this study, prolonged differentiation and modification of media conditions to enhance metanephric nephron progenitor specification resulted in the induction of nephrons containing elongated and aligned proximal nephron segments together with SLC12A1+ loops of Henle. Nephron proximal segments showed superior HNF4A gene and protein expression, as well as upregulation of key functional transporters, including SLC3A1/2, SLC47A1, and SLC22A2. The striking proximo-distal orientation of nephrons was shown to result from localised WNT antagonism originating from the centre of the organoid. Functionality of such transporters was evidenced by albumin and organic cation uptake, as well as appropriate KIM-1 upregulation in response to the nephrotoxicant, cisplatin. PT-enhanced organoids also possessed improved expression of receptors associated with SARS-CoV2 entry, rendering these organoids susceptible to infection and able to support viral replication without co-location of ACE2 and TMPRSS2. These PT-enhanced organoids provide an accurate model with which to study human proximal tubule maturation, inherited and acquired proximal tubular disease, and drug and viral responses.

2012 ◽  
Vol 302 (5) ◽  
pp. R494-R509 ◽  
Author(s):  
Brianne Ellis ◽  
Xiao C. Li ◽  
Elisa Miguel-Qin ◽  
Victor Gu ◽  
Jia L. Zhuo

ANG II is the most potent and important member of the classical renin-angiotensin system (RAS). ANG II, once considered to be an endocrine hormone, is now increasingly recognized to also play novel and important paracrine (cell-to-cell) and intracrine (intracellular) roles in cardiovascular and renal physiology and blood pressure regulation. Although an intracrine role of ANG II remains an issue of continuous debates and requires further confirmation, a great deal of research has recently been devoted to uncover the novel actions and elucidate underlying signaling mechanisms of the so-called intracellular ANG II in cardiovascular, neural, and renal systems. The purpose of this article is to provide a comprehensive review of the intracellular actions of ANG II, either administered directly into the cells or expressed as an intracellularly functional fusion protein, and its effects throughout a variety of target tissues susceptible to the impacts of an overactive ANG II, with a particular focus on the proximal tubules of the kidney. While continuously reaffirming the roles of extracellular or circulating ANG II in the proximal tubules, our review will focus on recent evidence obtained for the novel biological roles of intracellular ANG II in cultured proximal tubule cells in vitro and the potential physiological roles of intracellular ANG II in the regulation of proximal tubular reabsorption and blood pressure in rats and mice. It is our hope that the new knowledge on the roles of intracellular ANG II in proximal tubules will serve as a catalyst to stimulate further studies and debates in the field and to help us better understand how extracellular and intracellular ANG II acts independently or interacts with each other, to regulate proximal tubular transport and blood pressure in both physiological and diseased states.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Vidya Chandrasekaran ◽  
Giada Carta ◽  
Daniel da Costa Pereira ◽  
Rajinder Gupta ◽  
Cormac Murphy ◽  
...  

AbstractThe renal proximal tubule is responsible for re-absorption of the majority of the glomerular filtrate and its proper function is necessary for whole-body homeostasis. Aging, certain diseases and chemical-induced toxicity are factors that contribute to proximal tubule injury and chronic kidney disease progression. To better understand these processes, it would be advantageous to generate renal tissues from human induced pluripotent stem cells (iPSC). Here, we report the differentiation and characterization of iPSC lines into proximal tubular-like cells (PTL). The protocol is a step wise exposure of small molecules and growth factors, including the GSK3 inhibitor (CHIR99021), the retinoic acid receptor activator (TTNPB), FGF9 and EGF, to drive iPSC to PTL via cell stages representing characteristics of early stages of renal development. Genome-wide RNA sequencing showed that PTL clustered within a kidney phenotype. PTL expressed proximal tubular-specific markers, including megalin (LRP2), showed a polarized phenotype, and were responsive to parathyroid hormone. PTL could take up albumin and exhibited ABCB1 transport activity. The phenotype was stable for up to 7 days and was maintained after passaging. This protocol will form the basis of an optimized strategy for molecular investigations using iPSC derived PTL.


Cells ◽  
2015 ◽  
Vol 4 (3) ◽  
pp. 234-252 ◽  
Author(s):  
Carolien Schophuizen ◽  
Joost Hoenderop ◽  
Rosalinde Masereeuw ◽  
Lambert Heuvel

1963 ◽  
Vol 205 (4) ◽  
pp. 693-696 ◽  
Author(s):  
James R. Clapp ◽  
John F. Watson ◽  
Robert W. Berliner

Samples of fluid from the proximal tubule were collected for the measurement of pH and bicarbonate concentration before and after the administration of acetazolamide (Diamox). Samples collected before acetazolamide were consistently more acid than plasma with the most acid samples coming from the more distal portion of the proximal tubule. After the intravenous administration of acetazolamide, the pH and bicarbonate concentration were consistently higher than in plasma. Bicarbonate concentrations as high as 2.8 times that in plasma were observed. The rise in proximal tubular fluid bicarbonate concentration after acetazolamide is presumably due to a reduction in the rate of bicarbonate reabsorption out of proportion to any impairment in proximal tubular fluid volume reduction.


1979 ◽  
Vol 236 (4) ◽  
pp. F392-F397
Author(s):  
P. S. Aronson ◽  
J. P. Hayslett ◽  
M. Kashgarian

The effect of amphotericin B on glucose and Na+ transport was studied in the Necturus proximal tubule and in microvillus membrane vesicles isolated from the rabbit renal cortex. In the Necturus experiments, the rate constants for disappearance of radiolabeled glucose (kG) and mannitol (kM) from the tubular lumen were determined by stop-flow microperfusion. Saturability and Na+-dependence of glucose reabsorption was confirmed, since kG was reduced by raising intratubular glucose from 1 to 5 mM or by replacing intratubular Na+ with choline. Neither maneuver affected kM. Intratubular amphotericin B (10 microgram/ml), previously shown to stimulate active Na+ reabsorption in the Necturus proximal tubule, inhibited kG with no effect on kM. In the membrane vesicle preparation, amphotericin inhibited the uphill glucose uptake which results from imposing a NaCl gradient from outside to inside, but had no effect on glucose uptake in either the absence of Na+ or in the presence of Na+ when there was no Na+ gradient. Amphotericin B stimulated the uptake of Na+ by the vesicles. The observed dissociation of glucose and Na+ transport by amphotericin B is consistent with the concept that proximal tubular glucose reabsorption is energized by the luminal membrane Na+ gradient and is not directly linked to active Na+ transport per se.


1990 ◽  
Vol 259 (6) ◽  
pp. C897-C903 ◽  
Author(s):  
P. P. Sokol ◽  
L. C. Capodagli ◽  
M. Dixon ◽  
P. D. Holohan ◽  
C. R. Ross ◽  
...  

The capability of cyclosporin to produce direct injury to primary proximal tubular renal cells was studied. These cells, when grown on Millicell inserts, retain the functional polarity of the proximal tubule, i.e., generate a transepithelial pH gradient (apical compartment acidic) that is reversibly blocked by amiloride addition only if it is added to the apical compartment. Administration of ouabain to the basal compartment also blocks the generation of the transepithelial pH gradient. Additionally, the cells were more responsive to parathyroid hormone (PTH), a proximal tubule characteristic, than to arginine vasopressin (AVP), a distal tubule characteristic. The following substances were tested for their effect on the capacity of these cells to generate a pH gradient: Sandimmune, the commercial form of cyclosporin A; the free form of the drug; Cremophor EL, the vehicle used in the commercial preparation; and ethanol, the vehicle used to dissolve the free form. Sandimmune, at 25-50 microM, inhibited the generation of the pH gradient within 24 h. Surprisingly, Cremophor also blocked the development of a pH gradient, although somewhat less effectively. In contrast, 10 microM cyclosporin, regardless of the form tested, had no effect for up to 96 h. These findings show that cyclosporin, in the form of Sandimmune, has a direct toxic effect on these cells; they also suggest that the vehicle, Cremophor, may contribute to the well-established nephrotoxicity of cyclosporin A.


1982 ◽  
Vol 242 (1) ◽  
pp. F23-F29 ◽  
Author(s):  
N. Bank ◽  
P. D. Lief ◽  
H. S. Aynedjian ◽  
B. F. Mutz

Experiments were carried out in rats and isolated turtle bladders to study the defect in H+ transport induced by LiCl. After 3-4 days of intraperitoneal LiCl, rats developed urinary findings of "distal" renal tubular acidosis. Proximal tubular fluid pH measured in situ by glass microelectrodes was higher in lithium-treated rats than in acidotic controls. Proximal fluid total CO2 [tCO2] was also higher, and the fraction of tCO2 leaving the proximal tubule was 14 vs. 7% (P less than 0.001). Impaired acidification was also apparent beyond distal convoluted tubules, as judged by normal distal tCO2 reabsorption but increased HCO3(-) in the urine. During NaHCO3 loading, the proximal defect was ameliorated but not the distal. Turtle bladder studies showed that mucosal lithium inhibits H+ secretion secondary to reducing transepithelial electrical potential, presumably by hyperpolarization of the luminal membrane. A similar mechanism may be responsible for lithium's effect on the distal nephron. Inhibition of proximal tubular HCO3(-) reabsorption is probably not attributable to electrical potential changes but might be due to interference of luminal membrane Na+ entry by Li+ and reduced (Na+ + Li+)-H+ exchange.


1975 ◽  
Vol 229 (3) ◽  
pp. 813-819 ◽  
Author(s):  
A Grandchamp ◽  
Scherrer ◽  
D Scholer ◽  
J Bornand

The effect of small changes in intraluminal hydrostatic pressure (P) on the tubular radius (r) and the net fluid reabsorption per unit of surface area of the tubular wall (Js) has been studied in the proximal tubule of the rat kidney. The split-drop method was used to simultaneously determine Js and r. Two standardized split-drop techniques A and B allow selective change in P. P was 31.6 +/- 1.3 mmHg in technique A and 15.5 +/- 1.5 in technique B. The pressure difference significantly affected the tubular radius; r was 21.9 +/- 0.4 and 18.6 +/- 0.5 mum in the split drop A and B, respectively. In contrast, net transepithelial fluid reabsorption Js was unchanged. Js amounted to 2.72 +/- 0.20, and 2.78 +/- 0.33 10(-5) cm3 cm-2 s-1 in split drop A and B. The absence of variations in Js could result from two opposite effects of pressure. P might enhance Js by increased ultrafiltration. However, the rise in r might decrease the density of the intraepithelial transport paths per unit area of tubular wall and therefore might decrease Js.


1996 ◽  
Vol 270 (6) ◽  
pp. F986-F996
Author(s):  
W. R. Fitzgibbon ◽  
S. K. Webster ◽  
A. Imamura ◽  
D. W. Ploth ◽  
F. N. Hutchison

In passive Heymann nephritis (PHN), angiotensin-converting enzyme inhibition (ACEI) or a low dietary protein intake decreases albuminuria (UAlbV). Although this reduction in albuminuria appears to result from an improvement in glomerular permselectivity, the effect of these treatments on albumin permeation and absorption by the nephron has not been clarified. This study used micropuncture techniques to examine the effect of these two treatments on albumin permeation (by measuring the delivery of albumin to the proximal tubule) and the tubular absorption of albumin. PHN rats (12-18 days after injection of FX1A) were switched from 23% to either 40% protein diet (HP), 40% protein diet and concomitantly treated with enalapril (40 mg.kg-1.day-1) (HPE), or to 8% (LP) protein diet for 4-6 days. Although left kidney glomerular filtration rate (GFR) did not differ among the groups, UAlbV from the left kidney in LP and HPE was only 20-40% of that observed for the HP group. In protocol 1, the fractional recovery of albumin (FRAlb) in urine was calculated following injection of artificial tubular fluid containing [14C]inulin and 125I-labeled albumin into the earliest identifiable proximal loops. There were no differences in FRAlb among the three groups. In protocol 2, timed quantitative collections of tubular fluid were obtained from proximal tubular loops. The rate of albumin delivery to the earliest accessible loops of the proximal tubule was significantly lower for the LP and HPE groups compared with the HP group. For each group, albumin concentration corrected for water absorption was not altered along the proximal tubule. The data indicate that alterations of dietary protein intake or ACEI treatment results in large changes in the delivery of albumin at the proximal tubule that could singularly account for the changes in urinary albumin excretion.


2019 ◽  
Vol 30 (10) ◽  
pp. 1811-1823 ◽  
Author(s):  
Jessica M. Vanslambrouck ◽  
Sean B. Wilson ◽  
Ker Sin Tan ◽  
Joanne Y.-C. Soo ◽  
Michelle Scurr ◽  
...  

BackgroundThe generation of reporter lines for cell identity, lineage, and physiologic state has provided a powerful tool in advancing the dissection of mouse kidney morphogenesis at a molecular level. Although use of this approach is not an option for studying human development in vivo, its application in human induced pluripotent stem cells (iPSCs) is now feasible.MethodsWe used CRISPR/Cas9 gene editing to generate ten fluorescence reporter iPSC lines designed to identify nephron progenitors, podocytes, proximal and distal nephron, and ureteric epithelium. Directed differentiation to kidney organoids was performed according to published protocols. Using immunofluorescence and live confocal microscopy, flow cytometry, and cell sorting techniques, we investigated organoid patterning and reporter expression characteristics.ResultsEach iPSC reporter line formed well patterned kidney organoids. All reporter lines showed congruence of endogenous gene and protein expression, enabling isolation and characterization of kidney cell types of interest. We also demonstrated successful application of reporter lines for time-lapse imaging and mouse transplantation experiments.ConclusionsWe generated, validated, and applied a suite of fluorescence iPSC reporter lines for the study of morphogenesis within human kidney organoids. This fluorescent iPSC reporter toolbox enables the visualization and isolation of key populations in forming kidney organoids, facilitating a range of applications, including cellular isolation, time-lapse imaging, protocol optimization, and lineage-tracing approaches. These tools offer promise for enhancing our understanding of this model system and its correspondence with human kidney morphogenesis.


Sign in / Sign up

Export Citation Format

Share Document