scholarly journals Long-term imaging of the ventral nerve cord in behaving adult Drosophila

2021 ◽  
Author(s):  
Pavan Ramdya ◽  
Laura Hermans ◽  
Murat Kaynak ◽  
Jonas Braun ◽  
Victor Lobato-Rios ◽  
...  

The dynamics and connectivity of neural circuits continuously change during an animal's lifetime on timescales ranging from milliseconds to days. Therefore, to investigate how biological networks accomplish remarkable cognitive and behavioral tasks, minimally invasive methods are needed to perform repeated measurements, or perturbations of neural circuits in behaving animals across time. Such tools have been developed to investigate the brain but similar approaches are lacking for comprehensively and repeatedly recording motor circuits in behaving animals. Here we describe a suite of microfabricated technologies that enable long-term, minimally invasive optical recordings of the adult Drosophila melanogaster ventral nerve cord (VNC)---neural tissues that are functionally equivalent to the vertebrate spinal cord. These tools consist of (i) a manipulator arm that permits the insertion of (ii) a compliant implant into the thorax to expose the imaging region of interest; (iii) a numbered, transparent polymer window that encloses and provides optical access to the inside of the thorax, and (iv) a hinged remounting stage that allows gentle and repeated tethering of an implanted animal for two-photon imaging. We validate and illustrate the utility of our toolkit in several ways. First, we show that the thoracic implant and window have minimal impact on animal behavior and survival while also enabling neural recordings from individual animals across at least one month. Second, we follow the degradation of chordotonal organ mechanosensory nerve terminals in the VNC over weeks after leg amputation. Third, because our tools allow recordings of the VNC with the gut intact, we discover waves of neural population activity following ingestion of a high-concentration caffeine solution. In summary, our microfabricated toolkit makes it possible to longitudinally monitor anatomical and functional changes in premotor and motor neural circuits, and more generally opens up the long-term investigation of thoracic tissues.

2018 ◽  
Author(s):  
Chin-Lin Chen ◽  
Laura Hermans ◽  
Meera C. Viswanathan ◽  
Denis Fortun ◽  
Michael Unser ◽  
...  

AbstractTo understand neural circuits that control limbs, one must measure their activity during behavior. Until now this goal has been challenging, because the portion of the nervous system that contains limb premotor and motor circuits is largely inaccessible to large-scale recording techniques in intact, moving animals – a constraint that is true for both vertebrate and invertebrate models. Here, we introduce a method for 2-photon functional imaging from the ventral nerve cord of behaving adult Drosophila melanogaster. We use this method to reveal patterns of activity across nerve cord populations during grooming and walking and to uncover the functional encoding of moonwalker ascending neurons (MANs), moonwalker descending neurons (MDNs), and a novel class of locomotion-associated descending neurons. This new approach enables the direct investigation of circuits associated with complex limb movements.


1983 ◽  
Vol 105 (1) ◽  
pp. 127-145 ◽  
Author(s):  
ULRICH BÄSSLER ◽  
U. T. A. WEGNER

The denervated thoracic ventral nerve cord produces a motor output which is similar to that observed in the intact animal during irregular leg movements (seeking movements) or rocking, but not walking. When the nerves to some legs are left intact, and the animal walks on a wheel, the motor output in the protractor and retractor motor neurones of the denervated legs is modulated by the stepping frequency of the walking legs. The modulation is similar to that observed in the motor output to a not actually stepping leg of an intact walking animal. When only the crural nerve of one leg is left intact, stimulation of the trochanteral campaniform sensilli induces protractor and retractor motor output to that leg and the leg behind it. In this case the motor output to the ipsilateral leg is in phase. Stimulation of the femoral chordotonal organ influences activity in motor neurones of the extensor tibiae (FETi and SETi) but not those of the protractor and retractor coxae muscles. In a restrained leg of an intact animal stretching of the femoral chordotonal organ excites FETi and SETi as long as the other legs walk (as in a walking leg) and inhibits FETi and SETi (as in a seeking leg) when the other legs are unable to walk.


2020 ◽  
Author(s):  
Spencer Ward ◽  
Conor Riley ◽  
Erin M. Carey ◽  
Jenny Nguyen ◽  
Sadik Esener ◽  
...  

Central to advancing our understanding of neural circuits is the development of minimally invasive, multi-modal interfaces capable of simultaneously recording and modulating neural activity. Recent devices have focused on matching the mechanical compliance of tissue to reduce inflammatory responses1,2. However, reductions in the size of multi-modal interfaces are needed to further improve biocompatibility and long-term recording capabilities1. Here we demonstrate a multi-modal coaxial microprobe design with a minimally invasive footprint (8-12 μm diameter over millimeter lengths) that enables efficient electrical and optical interrogation of neural networks. In the brain, the probes allowed robust electrical measurement and optogenetic stimulation. Scalable fabrication strategies can be used with various electrical and optical materials, making the probes highly customizable to experimental requirements, including length, diameter, and mechanical properties. Given their negligible inflammatory response, these probes promise to enable a new generation of readily tunable multi-modal devices for minimally invasive interfacing with neural circuits.


2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Chin-Lin Chen ◽  
Laura Hermans ◽  
Meera C. Viswanathan ◽  
Denis Fortun ◽  
Florian Aymanns ◽  
...  

2020 ◽  
Author(s):  
Aaron M Allen ◽  
Megan C Neville ◽  
Sebastian Birtles ◽  
Vincent Croset ◽  
Christoph Daniel Treiber ◽  
...  

Author(s):  
Roy J. Baerwald ◽  
Lura C. Williamson

In arthropods the perineurium surrounds the neuropile, consists of modified glial cells, and is the morphological basis for the blood-brain barrier. The perineurium is surrounded by an acellular neural lamella, sometimes containing scattered collagen-like fibrils. This perineurial-neural lamellar complex is thought to occur ubiquitously throughout the arthropods. This report describes a SEM and TEM study of the sheath surrounding the ventral nerve cord of Panulirus argus.Juvenile P. argus were collected from the Florida Keys and maintained in marine aquaria. Nerve cords were fixed for TEM in Karnovsky's fixative and saturated tannic acid in 0.1 M Na-cacodylate buffer, pH = 7.4; post-fixed in 1.0% OsO4 in the same buffer; dehydrated through a graded series of ethanols; embedded in Epon-Araldite; and examined in a Philips 200 TEM. Nerve cords were fixed for SEM in a similar manner except that tannic acid was not used.


Sign in / Sign up

Export Citation Format

Share Document