scholarly journals Microtubule disassembly by caspases is the rate-limiting step of cell extrusion

2021 ◽  
Author(s):  
Alexis Villars ◽  
Alexis Matamoro-Vidal ◽  
Florence Levillayer ◽  
Romain Levayer

Epithelial cell death is essential for tissue homeostasis, robustness and morphogenesis. The expulsion of epithelial cells following caspase activation requires well-orchestrated remodeling steps leading to cell elimination without impairing tissue sealing. While numerous studies have provided insight about the process of cell extrusion, we still know very little about the relationship between caspase activation and the remodeling steps of cell extrusion. Moreover, most studies of cell extrusion focused on the regulation of actomyosin and steps leading to the formation of a supracellular contractile ring. However, the contribution of other cellular factors to cell extrusion has been poorly explored. Using the Drosophila pupal notum, a single layer epithelium where most extrusion events are caspase-dependent, we first showed that the initiation of cell extrusion and apical constriction are surprisingly not associated with the modulation of actomyosin concentration/dynamics. Instead, cell apical constriction is initiated by the disassembly of a medio-apical mesh of microtubules which is driven by effector caspases. We confirmed that local and rapid increase/decrease of microtubules is sufficient to respectively expand/constrict cell apical area. Importantly, the depletion of microtubules is sufficient to bypass the requirement of caspases for cell extrusion. This study shows that microtubules disassembly by caspases is a key rate-limiting steps of extrusion, and outlines a more general function of microtubules in epithelial cell shape stabilisation.

2020 ◽  
Author(s):  
Léo Valon ◽  
Anđela Davidović ◽  
Florence Levillayer ◽  
Mathilde Chouly ◽  
Fabiana Cerqueira-Campos ◽  
...  

AbstractWhile the pathways regulating apoptosis and cell extrusion are rather well described1,2, what regulates the precise spatio-temporal distribution of cell elimination in tissues remains largely unknown. This is particularly relevant for epithelia with high rates of cell elimination, a widespread situation during embryogenesis3–6 and epithelial homeostasis7, where concomitant death of neighbours could impair the maintenance of epithelial sealing. However, the extent to which epithelial tissues can cope with concomitant cell death, and whether any mechanism regulates such occurrence have never been explored so far. Here, using the Drosophila pupal notum (a single layer epithelium) and a new optogenetic tool to trigger caspase activation and cell extrusion, we first show that concomitant death of clusters of at least three cells is sufficient to transiently impair epithelial sealing. Such clustered extrusion was almost never observed in vivo, suggesting the existence of a mechanism preventing concomitant elimination of neighbours. Statistical analysis and simulations of cell death distribution in the notum highlighted a transient and local protective phase occurring near every dying cell. This protection is driven by a transient activation of ERK in the direct neighbours of extruding cells which reverts caspase activation and prevents elimination of cells in clusters. Altogether, this study demonstrates that the distribution of cell elimination in epithelia is an emerging property of transient and local feedbacks through ERK activation which is required to maintain epithelial sealing in conditions of high rate of cell elimination.


1978 ◽  
Vol 39 (02) ◽  
pp. 496-503 ◽  
Author(s):  
P A D’Amore ◽  
H B Hechtman ◽  
D Shepro

SummaryOrnithine decarboxylase (ODC) activity, the rate-limiting step in the synthesis of polyamines, can be demonstrated in cultured, bovine, aortic endothelial cells (EC). Serum, serotonin and thrombin produce a rise in ODC activity. The serotonin-induced ODC activity is significantly blocked by imipramine (10-5 M) or Lilly 11 0140 (10-6M). Preincubation of EC with these blockers together almost completely depresses the 5-HT-stimulated ODC activity. These observations suggest a manner by which platelets may maintain EC structural and metabolic soundness.


Diabetes ◽  
1993 ◽  
Vol 42 (2) ◽  
pp. 296-306 ◽  
Author(s):  
D. C. Bradley ◽  
R. A. Poulin ◽  
R. N. Bergman

2020 ◽  
Author(s):  
Chang-Sheng Wang ◽  
Sabrina Monaco ◽  
Anh Ngoc Thai ◽  
Md. Shafiqur Rahman ◽  
Chen Wang ◽  
...  

A catalytic system comprised of a cobalt-diphosphine complex and a Lewis acid (LA) such as AlMe3 has been found to promote hydrocarbofunctionalization reactions of alkynes with Lewis basic and electron-deficient substrates such as formamides, pyridones, pyridines, and azole derivatives through site-selective C-H activation. Compared with known Ni/LA catalytic system for analogous transformations, the present catalytic system not only feature convenient set up using inexpensive and bench-stable precatalyst and ligand such as Co(acac)3 and 1,3-bis(diphenylphosphino)propane (dppp), but also display distinct site-selectivity toward C-H activation of pyridone and pyridine derivatives. In particular, a completely C4-selective alkenylation of pyridine has been achieved for the first time. Mechanistic stidies including DFT calculations on the Co/Al-catalyzed addition of formamide to alkyne have suggested that the reaction involves cleavage of the carbamoyl C-H bond as the rate-limiting step, which proceeds through a ligand-to-ligand hydrogen transfer (LLHT) mechanism leading to an alkyl(carbamoyl)cobalt intermediate.


1979 ◽  
Vol 44 (3) ◽  
pp. 912-917 ◽  
Author(s):  
Vladimír Macháček ◽  
Said A. El-bahai ◽  
Vojeslav Štěrba

Kinetics of formation of 2-imino-4-thiazolidone from S-ethoxycarbonylmethylisothiouronium chloride has been studied in aqueous buffers and dilute hydrochloric acid. The reaction is subject to general base catalysis, the β value being 0.65. Its rate limiting step consists in acid-catalyzed splitting off of ethoxide ion from dipolar tetrahedral intermediate. At pH < 2 formation of this intermediate becomes rate-limiting; rate constant of its formation is 2 . 104 s-1.


Sign in / Sign up

Export Citation Format

Share Document