scholarly journals Identification of key interactions of benzimidazole resistance-associated amino acid mutations in Ascaris β-tubulins by molecular docking simulations

2021 ◽  
Author(s):  
Ben Paul Jones ◽  
Arnoud H. M. van Vliet ◽  
E. James La Course ◽  
Martha Betson

Ascaris species are soil-transmitted helminths that infect humans and livestock mainly in low and middle-income countries. Benzimidazole (BZ) class drugs have predominated for many years in the treatment of Ascaris infections, but persistent use of BZs has already led to widespread resistance in other nematodes, and treatment failure is emerging for Ascaris. Benzimidazoles act by binding to β-tubulin proteins and destabilising microtubules. Three mutations in the β-tubulin protein family are associated with BZ resistance. Seven shared β-tubulin isotypes were identified in Ascaris lumbricoides and A. suum genomes. Benzimidazoles were predicted to bind to all β-tubulin isotypes using in silico docking, demonstrating that the selectivity of BZs to interact with one or two β-tubulin isotypes is likely the result of isotype expression levels affecting the frequency of interaction. Ascaris β-tubulin isotype A clusters with helminth β-tubulins previously shown to interact with BZ. Molecular dynamics simulations using β-tubulin isotype A highlighted the key role of amino acid E198 in BZ-β-tubulin interactions. Simulations indicated that mutations at amino acids E198A and F200Y alter binding of BZ, whereas there was no obvious effect of the F167Y mutation. In conclusion, the key interactions vital for BZ binding with β-tubulins have been identified and show how mutations can lead to resistance in nematodes.

2021 ◽  
Author(s):  
Ben P. Jones ◽  
Arnoud H.M. Vliet ◽  
E. James LaCourse ◽  
Martha Betson

Abstract Ascaris species are soil-transmitted helminths that infect humans and livestock mainly in low and middle-income countries. Benzimidazole (BZ) class drugs have predominated for many years in the treatment of Ascaris infections, but persistent use of BZs has already led to widespread resistance in other nematodes, and treatment failure is emerging for Ascaris. Benzimidazoles act by binding to β-tubulin proteins and destabilising microtubules. Three mutations in the β-tubulin protein family are associated with BZ resistance. Seven shared β-tubulin isotypes were identified in Ascaris lumbricoides and A. suum genomes. Benzimidazoles were predicted to bind to all β-tubulin isotypes using in silico docking, demonstrating that the selectivity of BZs to interact with one or two β-tubulin isotypes is likely the result of isotype expression levels affecting the frequency of interaction. Ascaris β-tubulin isotype A clusters with helminth β-tubulins previously shown to interact with BZ. Molecular dynamics simulations using β-tubulin isotype A highlighted the key role of amino acid E198 in BZ-β-tubulin interactions. Simulations indicated that mutations at amino acids E198A and F200Y alter binding of BZ, whereas there was no obvious effect of the F167Y mutation. In conclusion, the key interactions vital for BZ binding with β-tubulins have been identified and show how mutations can lead to resistance in nematodes.


2004 ◽  
Vol 15 (1) ◽  
pp. 142-150 ◽  
Author(s):  
Chenggang Lu ◽  
Martin Srayko ◽  
Paul E. Mains

The microtubule-severing protein complex katanin is required for a variety of important microtubule-base morphological changes in both animals and plants. Caenorhabditis elegans katanin is encoded by the mei-1 and mei-2 genes and is required for oocyte meiotic spindle formation and must be inactivated before the first mitotic cleavage. We identified a mutation, sb26, in the tbb-2 β-tubulin gene that partially inhibits MEI-1/MEI-2 activity: sb26 rescues lethality caused by ectopic MEI-1/MEI-2 expression during mitosis, and sb26 increases meiotic defects in a genetic background where MEI-1/MEI-2 activity is lower than normal. sb26 does not interfere with MEI-1/MEI-2 microtubule localization, suggesting that this mutation likely interferes with severing. Tubulin deletion alleles and RNA-mediated interference revealed that TBB-2 and the other germline enriched β-tubulin isotype, TBB-1, are redundant for embryonic viability. However, limiting MEI-1/MEI-2 activity in these experiments revealed that MEI-1/MEI-2 preferentially interacts with TBB-2–containing microtubules. Our results demonstrate that these two superficially redundant β-tubulin isotypes have functionally distinct roles in vivo.


2007 ◽  
Vol 3 ◽  
pp. 117693510700300 ◽  
Author(s):  
J. Torin Huzil ◽  
Ke Chen ◽  
Lukasz Kurgan ◽  
Jack A. Tuszynski

The antitumor drug paclitaxel stabilizes microtubules and reduces their dynamicity, promoting mitotic arrest and eventually apoptosis. Upon assembly of the α/β-tubulin heterodimer, GTP becomes bound to both the α and β-tubulin monomers. During microtubule assembly, the GTP bound to β-tubulin is hydrolyzed to GDP, eventually reaching steady-state equilibrium between free tubulin dimers and those polymerized into microtubules. Tubulin-binding drugs such as paclitaxel interact with β-tubulin, resulting in the disruption of this equilibrium. In spite of several crystal structures of tubulin, there is little biochemical insight into the mechanism by which anti-tubulin drugs target microtubules and alter their normal behavior. The mechanism of drug action is further complicated, as the description of altered β-tubulin isotype expression and/or mutations in tubulin genes may lead to drug resistance as has been described in the literature. Because of the relationship between β-tubulin isotype expression and mutations within β-tubulin, both leading to resistance, we examined the properties of altered residues within the taxane, colchicine and Vinca binding sites. The amount of data now available, allows us to investigate common patterns that lead to microtubule disruption and may provide a guide to the rational design of novel compounds that can inhibit microtubule dynamics for specific tubulin isotypes or, indeed resistant cell lines. Because of the vast amount of data published to date, we will only provide a broad overview of the mutational results and how these correlate with differences between tubulin isotypes. We also note that clinical studies describe a number of predictive factors for the response to anti-tubulin drugs and attempt to develop an understanding of the features within tubulin that may help explain how they may affect both microtubule assembly and stability.


1989 ◽  
Vol 94 (2) ◽  
pp. 217-226
Author(s):  
M. Diggins-Gilicinski ◽  
L. Solnica-Krezel ◽  
T.G. Burland ◽  
E.C. Paul ◽  
W.F. Dove

The beta 2-tubulin isotype of Physarum polycephalum is only 83% identical in amino acid sequence with the constitutively expressed beta 1B-tubulin and the myxamoeba-specific beta 1A-tubulin isotypes. A polyclonal antibody specific for beta 2-tubulin was used to monitor the subcellular distribution of the beta 2-tubulin antigen in the mitotic spindle of the mature plasmodium - the sole microtubular array in that stage of Physarum. By immunofluorescence, the beta 2-tubulin antigen was detected throughout this anastral mitotic spindle, at all stages of mitosis. Physarum myxamoebae contain astral mitotic spindles and cytoskeletal microtubules. No beta 2-tubulin antigen was detected in the myxamoebal stage. However, as cultures of myxamoebae developed into plasmodia, the beta 2-tubulin antigen was found in the astral mitotic spindles and cytoskeletons in developing cells. Thus, the presence of the plasmodial beta 2-tubulin isotype in a mitotic spindle does not determine a closed, anastral mitosis.


Brain ◽  
2013 ◽  
Vol 136 (2) ◽  
pp. 522-535 ◽  
Author(s):  
Sheena Chew ◽  
Ravikumar Balasubramanian ◽  
Wai-Man Chan ◽  
Peter B. Kang ◽  
Caroline Andrews ◽  
...  

2019 ◽  
Author(s):  
David Guérit ◽  
Pauline Marie ◽  
Anne Morel ◽  
Justine Maurin ◽  
Christel Verollet ◽  
...  

AbstractAmong hematopoietic cells. osteoclasts (Oc) and immature dendritic cells (Dc) are closely related myeloid cells with distinct functions; Oc participate skeleton maintenance while Dc sample the environment for foreign antigens. Such specificities rely on profound modifications of gene and protein expression during Oc and Dc differentiation. We provide global proteomic and transcriptomic analyses of primary mouse Oc and Dc. based on original SILAC and RNAseq data. We established specific signatures for Oc and Dc including genes and proteins of unknown functions. In particular. we showed that Oc and Dc have the same α and β tubulin isotypes repertoire but that Oc express much more β tubulin isotype Tubb6. In both mouse and human Oc. we demonstrate that elevated expression of Tubb6 in Oc is necessary for correct podosomes organization and thus for the structure of the sealing zone. which sustains the bone resorption apparatus. Hence. lowering Tubb6 expression hindered Oc resorption activity. Overall. we highlight here potential new regulators of Oc and Dc biology and illustrate the functional importance of the tubulin isotype repertoire in the biology of differentiated cells.Summary statementThis study provides original proteomic and transcriptomic data of primary myeloid cells. The analysis led to signatures for osteoclasts and for immature dendritic cells including potential new regulators of their specific biology. RNA interference showed in particular that ß tubulin isotype Tubb6 participates in osteoclast podosome patterning. sealing zone structure and in the resorption activity.


2016 ◽  
Vol 113 (40) ◽  
pp. 11294-11299 ◽  
Author(s):  
Chia-Ping Huang Yang ◽  
Eng-Hui Yap ◽  
Hui Xiao ◽  
Andras Fiser ◽  
Susan Band Horwitz

There are seven β-tubulin isotypes present in distinct quantities in mammalian cells of different origin. Altered expression of β-tubulin isotypes has been reported in cancer cell lines resistant to microtubule stabilizing agents (MSAs) and in human tumors resistant to Taxol. To study the relative binding affinities of MSAs, tubulin from different sources, with distinct β-tubulin isotype content, were specifically photolabeled with a tritium-labeled Taxol analog, 2-(m-azidobenzoyl)taxol, alone or in the presence of MSAs. The inhibitory effects elicited by these MSAs on photolabeling were distinct for β-tubulin from different sources. To determine the exact amount of drug that binds to different β-tubulin isotypes, bovine brain tubulin was photolabeled and the isotypes resolved by high-resolution isoelectrofocusing. All bands were analyzed by mass spectrometry following cyanogen bromide digestion, and the identity and relative quantity of each β-tubulin isotype determined. It was found that compared with other β-tubulin isotypes, βIII-tubulin bound the least amount of 2-(m-azidobenzoyl)taxol. Analysis of the sequences of β-tubulin near the Taxol binding site indicated that, in addition to the M-loop that is known to be involved in drug binding, the leucine cluster region of βIII-tubulin contains a unique residue, alanine, at 218, compared with other isotypes that contain threonine. Molecular dynamic simulations indicated that the frequency of Taxol-accommodating conformations decreased dramatically in the T218A variant, compared with other β-tubulins. Our results indicate that the difference in residue 218 in βIII-tubulin may be responsible for inhibition of drug binding to this isotype, which could influence downstream cellular events.


Sign in / Sign up

Export Citation Format

Share Document