scholarly journals Ab initio modelling of an essential mammalian protein: Transcription Termination Factor 1 (TTF1)

2021 ◽  
Author(s):  
Kumud Tiwari ◽  
Aditi Gangopadhyay ◽  
Gajender Singh ◽  
Samarendra Kumar Singh

Transcription Termination Factor 1 (TTF1) is an essential mammalian protein that regulates cellular transcription, replication fork arrest, DNA damage repair, chromatin remodelling etc. TTF1 interacts with numerous cellular proteins to regulate various cellular phenomena, and plays a crucial role in maintaining normal cellular physiology, dysregulation of which has been reported towards cancerous transformation of the cells. However, despite its key role in cellular physiology, the complete structure of human TTF1 has not been elucidated to date, either experimentally or computationally. Hence, understanding the structure of human TTF1 becomes highly important for studying its functions and interactions with other cellular factors. Therefore, the aim of this study was to construct the complete structure of human TTF1 protein, using molecular modelling approaches. Owing to the lack of suitable homologues in the PDB, the complete structure of human TTF1 was constructed using ab initio modelling. The structural stability was determined using molecular dynamics (MD) simulations in explicit solvent, and trajectory analyses. The representative structure of human TTF1 was obtained by trajectory clustering, and the central residues were determined by centrality analyses of the residue interaction network of TTF1. Two residue clusters, in the oligomerisation domain and C-terminal domain, were determined to be central to the structural stability of human TTF1. To the best of our knowledge, this study is the first to report the complete structure of human TTF1, and the results obtained herein will provide structural insights for future research in cancer biology and related studies.

Cell ◽  
1993 ◽  
Vol 75 (1) ◽  
pp. 147-154 ◽  
Author(s):  
Mikhail Kashlev ◽  
Evgeny Nudler ◽  
Alex Goldfarb ◽  
Terry White ◽  
Elizabeth Kutter

1999 ◽  
Vol 112 (19) ◽  
pp. 3259-3268 ◽  
Author(s):  
V. Sirri ◽  
P. Roussel ◽  
D. Hernandez-Verdun

The transcription termination factor TTF-1 exerts two functions in ribosomal gene (rDNA) transcription: facilitating initiation and mediating termination of transcription. Using HeLa cells, we show that TTF-1 protein is colocalized with the active transcription machinery in the nucleolus and also with the inactive machinery present in certain mitotic nucleolar organizer regions (NORs) when rDNA transcription is repressed. We also show that TTF-1 is specifically phosphorylated during mitosis in a manner dependent on the cdc2-cyclin B kinase pathway and on an okadaic acid-sensitive phosphatase. Interestingly, the mitotically phosphorylated form of TTF-1 appearing at the G(2)/M transition phase was more easily solubilized than was the interphase form. This indicates that the chromatin-binding affinity of TTF-1 appears to be different in mitotic chromosomes compared to the interphase nucleolus. Correlated with this, the other DNA-binding factor, UBF, which interferes with chromatin conformation in the rDNA promoter, was more strongly bound to rDNA during mitosis than at interphase. The reorganization of the mitotic rDNA promoter might be induced by phosphorylation of certain components of the rDNA transcription machinery and participate in silencing of rDNA during mitosis.


1999 ◽  
Vol 3 (4) ◽  
pp. 487-493 ◽  
Author(s):  
Cynthia E. Bogden ◽  
Deborah Fass ◽  
Nick Bergman ◽  
Matthew D. Nichols ◽  
James M. Berger

Sign in / Sign up

Export Citation Format

Share Document