scholarly journals Rapid multilocus adaptation of clonal cabbage leaf curl virus populations to Arabidopsis thaliana

2021 ◽  
Author(s):  
J. Steen Hoyer ◽  
Olivia W. Wilkins ◽  
Aanandi Munshi ◽  
Emma Wiese ◽  
Divya Dubey ◽  
...  

Cabbage leaf curl virus (CabLCV) has a bipartite single-stranded DNA genome and infects the model plant Arabidopsis thaliana. CabLCV serves as a model for the genus Begomovirus, members of which cause tremendous crop losses worldwide. We have used CabLCV as a model for within-plant virus evolution by inoculating individual plants with infectious clones of both wild-type and mutagenized versions of the CabLCV genome. Consistent with previous reports, detrimental substitutions in the Replication-associated gene (Rep) were readily compensated for by direct reversion and/or alternative mutations. A surprising number of common mutations were detected elsewhere in both viral segments (DNA-A and DNA-B) indicating convergent evolution and suggesting that CabLCV may not be as well adapted to A. thaliana as commonly presumed. Consistent with this idea, a spontaneous coat protein variant consistently rose to higher allele frequency in a hypersusceptible A. thaliana accession (Sei-0) than in another susceptible accession (Col-0). Numerous high-frequency mutations were also detected in a candidate Rep binding site in DNA-B. Our results reinforce the fact that spontaneous mutation of this type of virus occurs rapidly and can change the majority consensus sequence of a within-plant virus population in weeks.

2009 ◽  
Vol 6 (1) ◽  
pp. 169 ◽  
Author(s):  
Diana L Trejo-Saavedra ◽  
Jean P Vielle-Calzada ◽  
Rafael F Rivera-Bustamante

2009 ◽  
Vol 83 (18) ◽  
pp. 9347-9355 ◽  
Author(s):  
Muhammad Shah Nawaz-ul-Rehman ◽  
Shahid Mansoor ◽  
Rob W. Briddon ◽  
Claude M. Fauquet

ABSTRACT Begomoviruses (family Geminiviridae) cause major losses to crops throughout the tropical regions of the world. Begomoviruses originating from the New World (NW) and the Old World (OW) are genetically distinct. Whereas the majority of OW begomoviruses have monopartite genomes and whereas most of these associate with a class of symptom-modulating satellites (known as betasatellites), the genomes of NW begomoviruses are exclusively bipartite and do not associate with satellites. Here, we show for the first time that a betasatellite (cotton leaf curl Multan betasatellite [CLCuMuB]) associated with a serious disease of cotton across southern Asia is capable of interacting with a NW begomovirus. In the presence of CLCuMuB, the symptoms of the NW cabbage leaf curl virus (CbLCuV) are enhanced in Nicotiana benthamiana. However, CbLCuV was unable to interact with a second betasatellite, chili leaf curl betasatellite. Although CbLCuV can transreplicate CLCuMuB, satellite accumulation levels in plants were low. However, progeny CLCuMuB isolated after just one round of infection with CbLCuV contained numerous mutations. Reinoculation of one such progeny CLCuMuB with CbLCuV to N. benthamiana yielded infections with significantly higher satellite DNA levels. This suggests that betasatellites can rapidly adapt for efficient transreplication by a new helper begomovirus, including begomoviruses originating from the NW. Although the precise mechanism of transreplication of betasatellites by begomoviruses remains unknown, an analysis of betasatellite mutants suggests that the sequence(s) required for maintenance of CLCuMuB by one of its cognate begomoviruses (cotton leaf curl Rajasthan virus) differs from the sequences required for maintenance by CbLCuV. The significance of these findings and, particularly, the threat that betasatellites pose to agriculture in the NW, are discussed.


2020 ◽  
Author(s):  
Rubén González ◽  
Anamarija Butkovic ◽  
Francisco Escaray ◽  
Javier Martínez-Latorre ◽  
Ízan Melero ◽  
...  

Abstract Environmental conditions are an important factor driving pathogens evolution. Here we explore the effects of drought stress in plant virus evolution. We evolved a potyvirus in well-watered and drought conditions in Arabidopsis thaliana accessions that differ in their response to virus infection. Virus adaptation occurred in all accessions independently of watering status. Drought-evolved viruses conferred a significantly higher tolerance to drought to infected plants. By contrast, non-significant increases in tolerance were observed in plants infected with viruses evolved under standard watering. The magnitude of this effect was dependent on the plant accessions. Differences in tolerance were correlated to alterations in the expression of host genes, some involved in regulation of the circadian clock, as well as in deep changes in the balance of phytohormones regulating defense and growth signaling pathways. Our results show that viruses can promote host survival in situations of abiotic stress, being the magnitude of such benefit a selectable trait.


2019 ◽  
Vol 18 (4) ◽  
pp. 363-371
Author(s):  
Ryoji Suzuki ◽  
Masashi Kato ◽  
Shiro Fukuta ◽  
Tetsuya Oyabu ◽  
Norikuni Saka

2004 ◽  
Vol 78 (9) ◽  
pp. 4817-4826 ◽  
Author(s):  
Gerardo Arguello-Astorga ◽  
Luisa Lopez-Ochoa ◽  
Ling-Jie Kong ◽  
Beverly M. Orozco ◽  
Sharon B. Settlage ◽  
...  

ABSTRACT The geminivirus replication factor AL1 interacts with the plant retinoblastoma-related protein (pRBR) to modulate host gene expression. The AL1 protein of tomato golden mosaic virus (TGMV) binds to pRBR through an 80-amino-acid region that contains two highly predicted α-helices designated 3 and 4. Earlier studies suggested that the helix 4 motif, whose amino acid sequence is strongly conserved across geminivirus replication proteins, plays a role in pRBR binding. We generated a series of alanine substitutions across helix 4 of TGMV AL1 and examined their impact on pRBR binding using yeast two-hybrid assays. These experiments showed that several helix 4 residues are essential for efficient pRBR binding, with a critical residue being a leucine at position 148 in the middle of the motif. Various amino acid substitutions at leucine-148 indicated that both structural and side chain components contribute to pRBR binding. The replication proteins of the geminiviruses tomato yellow leaf curl virus and cabbage leaf curl virus (CaLCuV) also bound to pRBR in yeast dihybrid assays. Mutation of the leucine residue in helix 4 of CaLCuV AL1 reduced binding. Together, these results suggest that helix 4 and the conserved leucine residue are part of a pRBR-binding interface in begomovirus replication proteins.


Plant Disease ◽  
2001 ◽  
Vol 85 (5) ◽  
pp. 561-561 ◽  
Author(s):  
B. Mandal ◽  
D. B. Langston ◽  
H. R. Pappu ◽  
G. H. Beard ◽  
T. A. Kucharek ◽  
...  

Cabbage and collard greens were inflicted with a previously undescribed virus-like disease during the fall 2000. Symptoms on leaves were yellow spots, vein clearing, mosaic, curling, and puckering. Symptomatic plants were widespread in Brooks, Colquitt, Grady, and Pierce counties in Georgia. Disease incidence ranged from 10 to 20% in the majority of the fields surveyed but some fields had 100% incidence. Fields were heavily infested by Bemisia argentifolii and the symptoms were suggestive of a whitefly-transmitted geminivirus infection. A polymerase chain reaction (PCR)-based diagnostic test for geminivirus was conducted. Total DNA was extracted from symptomatic cabbage and collard green plants collected from commercial fields. The two primers, 5'-GCCCACATYGTCTTYCCNGT-3' and 5'- GGCTTYCTRTACATRGG-3' (2,3), are “universal” for genus Begomovirus of family Geminiviridae. The primer pair could amplify a part of the replicase-associated protein and coat protein and the complete common region of DNA-A. The PCR gave a DNA band of expected size (1.1 kb) from both symptomatic cabbage and collard green samples, whereas no such product was obtained from healthy samples, suggesting that the causal agent could be a geminivirus. To establish the identity of the virus, the 1.1 kb PCR product was cloned into pGEM-T Easy (Promega) and sequenced. GenBank search showed that the geminivirus isolated in Georgia was most closely related (98% sequence identity) to Cabbage leaf curl virus (accession number U65529) reported from Florida (1). The virus was mechanically transmitted to healthy cabbage and collard green plants under experimental conditions. To our knowledge, this is the first report of Cabbage leaf curl virus from Georgia. References: (1) A. M. Abouzid et al. Phytopathology 82:1070, 1992. (2) S. S. Pappu et al. Plant Dis. 84:370, 2000. (3) M. R. Rojas et al. Plant Dis. 77:340–347, 1993.


2013 ◽  
Vol 159 (4) ◽  
pp. 801-805 ◽  
Author(s):  
Martin Verbeek ◽  
Annette M. Dullemans ◽  
Henry M. G. van Raaij ◽  
Jacobus Th. J. Verhoeven ◽  
René A. A. van der Vlugt

2004 ◽  
Vol 78 (20) ◽  
pp. 11161-11171 ◽  
Author(s):  
Miguel F. Carvalho ◽  
Sondra G. Lazarowitz

ABSTRACT DNA viruses can modulate the activity of cellular acetyltransferases to regulate virus gene expression and to affect cell cycle progression in order to support virus replication. A role for protein acetylation in regulating the nuclear export of the bipartite geminivirus DNA genome was recently suggested by the findings that the viral movement protein NSP, which shuttles the viral genome between the nucleus and the cytoplasm, interacts with a novel Arabidopsis acetyltransferase, AtNSI, and the increased expression of AtNSI enhances susceptibility to Cabbage leaf curl virus infection. To further investigate the interaction of NSP and AtNSI and to establish the importance of this interaction in virus infections, we used a reverse yeast two-hybrid selection and deletion analysis to identify NSP mutants that were impaired in their ability to bind AtNSI. These mutants identified a 38-amino-acid region of NSP, to which no function had so far been assigned, as being necessary for NSP-AtNSI interaction. Three NSP missense mutants were analyzed in detail and were found to be comparable to wild-type NSP in their levels of accumulation, nucleocytoplasmic shuttling, DNA binding, and cooperative interaction with the viral cell-to-cell movement protein MP. Despite this, Cabbage leaf curl virus that expressed each mutated NSP was defective in its ability to infect Arabidopsis, exhibiting lower levels of infectivity than the wild-type virus, and delayed systemic spread of the virus and attenuated disease symptoms. Our data demonstrate the importance of the interaction of NSP with AtNSI for virus infection and pathogenicity.


2021 ◽  
Vol 118 (6) ◽  
pp. e2020990118 ◽  
Author(s):  
Rubén González ◽  
Anamarija Butković ◽  
Francisco J. Escaray ◽  
Javier Martínez-Latorre ◽  
Ízan Melero ◽  
...  

Environmental conditions are an important factor driving pathogens’ evolution. Here, we explore the effects of drought stress in plant virus evolution. We evolved turnip mosaic potyvirus in well-watered and drought conditions in Arabidopsis thaliana accessions that differ in their response to virus infection. Virus adaptation occurred in all accessions independently of watering status. Drought-evolved viruses conferred a significantly higher drought tolerance to infected plants. By contrast, nonsignificant increases in tolerance were observed in plants infected with viruses evolved under standard watering. The magnitude of this effect was dependent on the plant accessions. Differences in tolerance were correlated to alterations in the expression of host genes, some involved in regulation of the circadian clock, as well as in deep changes in the balance of phytohormones regulating defense and growth signaling pathways. Our results show that viruses can promote host survival in situations of abiotic stress, with the magnitude of such benefit being a selectable trait.


Sign in / Sign up

Export Citation Format

Share Document