scholarly journals Mutated neuronal voltage-gated CaV2.1 channels causing familial hemiplegic migraine 1 increase the susceptibility for cortical spreading depolarization and seizures and worsen outcome after experimental traumatic brain injury

2021 ◽  
Author(s):  
Nicole A Terpollili ◽  
Reinhard Dolp ◽  
Kai Waehner ◽  
Susanne Schwarzmaier ◽  
Elisabeth Török ◽  
...  

Patients suffering from familial hemiplegic migraine type 1 (FHM1) may have a disproportionally severe outcome after head trauma, but the underlying mechanisms are unclear. Hence, we subjected knock-in mice carrying the severer S218L or milder R192Q FHM1 gain-of-function missense mutation in the CACNA1A gene that encodes the α1A subunit of neuronal voltage-gated CaV2.1 (P/Q-type) calcium channels and their wild-type (WT) littermates to experimental traumatic brain injury (TBI) by controlled cortical impact (CCI) and investigated cortical spreading depolarizations (CSDs), lesion volume, brain edema formation, and functional outcome. After TBI, all mutant mice displayed considerably more CSDs and seizures than WT mice, while S218L mutant mice had a substantially higher mortality. Brain edema formation and the resulting increase in intracranial pressure was more pronounced in mutant mice, while only S218L mutant mice had larger lesion volumes and worse functional outcome. Here we show that gain of CaV2.1 channel function worsens histopathological and functional outcome after TBI in mice. This phenotype was associated with a higher number of CSDs, increased seizure activity, and more pronounced brain edema formation. Hence, our results suggest increased susceptibility for CSDs and seizures as potential mechanisms for bad outcome after TBI in FHM1 mutation carriers.

2003 ◽  
pp. 257-260 ◽  
Author(s):  
Robert Vink ◽  
A. Young ◽  
C. J. Bennett ◽  
X. Hu ◽  
C. O. Connor ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Hui Liu ◽  
Gou ping Qiu ◽  
Fei Zhuo ◽  
Wei hua Yu ◽  
Shan quan Sun ◽  
...  

Objective. To understand how aquaporin4 (AQP4) and dystroglycan (DG) polarized distribution change and their roles in brain edema formation after traumatic brain injury (TBI).Methods. Brain water content, Evans blue detection, real-time PCR, western blot, and immunofluorescence were used.Results. At an early stage of TBI, AQP4 and DG maintained vessel-like pattern in perivascular endfeet; M1, M23, and M1/M23 were increased in the core lesion. At a later stage of TBI, DG expression was lost in perivascular area, accompanied with similar but delayed change of AQP4 expression; expression of M1, M23, and DG and the ratio of M1/M2 were increased.Conclusion. At an early stage, AQP4 and DG maintained the polarized distribution. Upregulated M1 and M23 could retard the cytotoxic edema formation. At a later stage AQP4 and DG polarized expression were lost from perivascular endfeet and induced the worst cytotoxic brain edema. The alteration of DG expression could regulate that of AQP4 expression after TBI.


2009 ◽  
Vol 30 (1) ◽  
pp. 130-139 ◽  
Author(s):  
Raimund Trabold ◽  
Christian Erös ◽  
Klaus Zweckberger ◽  
Jane Relton ◽  
Heike Beck ◽  
...  

Inflammatory mechanisms are known to contribute to the pathophysiology of traumatic brain injury (TBI). Since bradykinin is one of the first mediators activated during inflammation, we investigated the role of bradykinin and its receptors in posttraumatic secondary brain damage. We subjected wild-type (WT), B1-, and B2-receptor-knockout mice to controlled cortical impact (CCI) and analyzed tissue bradykinin as well as kinin receptor mRNA and protein expression up to 48 h thereafter. Brain edema, contusion volume, and functional outcome were assessed 24 h and 7 days after CCI. Tissue bradykinin was maximally increased 2 h after trauma ( P<0.01 versus sham). Kinin B1 receptor mRNA was upregulated up to four-fold 24 h after CCI. Immunohistochemistry showed that B1 and B2 receptors were expressed in the brain and were significantly upregulated in the traumatic penumbra 1 to 24 h after CCI. B2R−/− mice had significantly less brain edema (−51% versus WT, 24 h; P<0.001), smaller contusion volumes (∼50% versus WT 24 h and 7 d after CCI; P<0.05), and better functional outcome 7 days after TBI as compared with WT mice ( P<0.05). The present results show that bradykinin and its B2 receptors play a causal role for brain edema formation and cell death after TBI.


2010 ◽  
Vol 112 (4) ◽  
pp. 1015-1025 ◽  
Author(s):  
Clara Luh ◽  
Christoph R. Kuhlmann ◽  
Bianca Ackermann ◽  
Ralph Timaru-Kast ◽  
Heiko J. Luhmann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document