familial hemiplegic migraine
Recently Published Documents


TOTAL DOCUMENTS

379
(FIVE YEARS 54)

H-INDEX

54
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Nicole A Terpollili ◽  
Reinhard Dolp ◽  
Kai Waehner ◽  
Susanne Schwarzmaier ◽  
Elisabeth Török ◽  
...  

Patients suffering from familial hemiplegic migraine type 1 (FHM1) may have a disproportionally severe outcome after head trauma, but the underlying mechanisms are unclear. Hence, we subjected knock-in mice carrying the severer S218L or milder R192Q FHM1 gain-of-function missense mutation in the CACNA1A gene that encodes the α1A subunit of neuronal voltage-gated CaV2.1 (P/Q-type) calcium channels and their wild-type (WT) littermates to experimental traumatic brain injury (TBI) by controlled cortical impact (CCI) and investigated cortical spreading depolarizations (CSDs), lesion volume, brain edema formation, and functional outcome. After TBI, all mutant mice displayed considerably more CSDs and seizures than WT mice, while S218L mutant mice had a substantially higher mortality. Brain edema formation and the resulting increase in intracranial pressure was more pronounced in mutant mice, while only S218L mutant mice had larger lesion volumes and worse functional outcome. Here we show that gain of CaV2.1 channel function worsens histopathological and functional outcome after TBI in mice. This phenotype was associated with a higher number of CSDs, increased seizure activity, and more pronounced brain edema formation. Hence, our results suggest increased susceptibility for CSDs and seizures as potential mechanisms for bad outcome after TBI in FHM1 mutation carriers.


Neurology ◽  
2021 ◽  
pp. 10.1212/WNL.0000000000012947
Author(s):  
Florence Riant ◽  
Caroline Roos ◽  
Agathe Roubertie ◽  
Cécile Barbance ◽  
Jessica Hadjadj ◽  
...  

Background and objective:PRRT2 variants have been reported in a few cases of patients with hemiplegic migraine. To clarify the role of PRRT2 in familial hemiplegic migraine, we studied this gene in a large cohort of affected probands.Methods:PRRT2 was analyzed in 860 probands with hemiplegic migraine and PRRT2 mutations were identified in 30 probands. Genotyping of relatives identified a total of 49 persons with mutations whose clinical manifestations were detailed.Results:PRRT2 mutations were found in 12 of 163 probands previously tested negative for CACNA1A, ATP1A2 and SCN1A mutations, and in 18 of 697 consecutive probands screened simultaneously on the four genes. In this second group, pathogenic variants were found in 105 subjects, mostly in ATP1A2 (42%), followed by CACNA1A (26%), PRRT2 (17%) and SCN1A (15%). The PRRT2 mutations included seven distinct variants, five of which already described in persons with paroxysmal kinesigenic dyskinesia, and two new variants. Eight probands had a deletion of the whole PRRT2 gene.Among the 49 PRRT2 mutated patients, 26 had pure hemiplegic migraine, 16 had hemiplegic migraine associated with another manifestation: epilepsy (8), learning disabilities (5), hypersomnia (4) or abnormal movement (3). Three patients had epilepsy without migraine, two had paroxysmal kinesigenic dyskinesia without migraine, and one was asymptomatic.Conclusion:PRRT2 should be regarded as the fourth autosomal dominant gene for hemiplegic migraine, and screened in any affected patient, together with the three other main genes. Further studies are needed to understand how the same loss of function PRRT2 mutations can lead to a wide range of neurologic phenotypes including paroxysmal movement disorder, epilepsy, learning disabilities, sleep disorder and hemiplegic migraine.


2021 ◽  
Vol 429 ◽  
pp. 119276
Author(s):  
Marina Romozzi ◽  
Guido Primiano ◽  
Eleonora Rollo ◽  
Lorena Travaglini ◽  
Serenella Servidei ◽  
...  

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yingji Li ◽  
Wenjing Tang ◽  
Li Kang ◽  
Shanshan Kong ◽  
Zhao Dong ◽  
...  

Abstract Background Mutations in ATP1A2, the gene encoding the α2 subunit of Na+/K+-ATPase, are the main cause of familial hemiplegic migraine type 2 (FHM2). The clinical presentation of FHM2 with mutations in the same gene varies from pure FHM to severe forms with epilepsy and intellectual disability, but the correlation of these symptoms with different ATP1A2 mutations is still unclear. Methods Ten ATP1A2 missense mutations were selected according to different phenotypes of FHM patients. They caused pure FHM (FHM: R65W, R202Q, R593W, G762S), FHM with epilepsy (FHME: R548C, E825K, R938P), or FHM with epilepsy and intellectual disability (FHMEI: T378N, G615R, D718N). After ouabain resistance and fluorescence modification, plasmids carrying those mutations were transiently transfected into HEK293T and HeLa cells. The biochemical functions were studied including cell survival assays, membrane protein extraction, western blotting, and Na+/K+-ATPase activity tests. The electrophysiological functions of G762S, R938P, and G615R mutations were investigated in HEK293T cells using whole-cell patch-clamp. Homology modeling was performed to determine the locational distribution of ATP1A2 mutations. Results Compared with wild-type pumps, all mutations showed a similar level of protein expression and decreased cell viability in the presence of 1 µM ouabain, and there was no significant difference among the mutant groups. The changes in Na+/K+-ATPase activity were correlated with the severity of FHM phenotypes. In the presence of 100 µM ouabain, the Na+/K+-ATPase activity was FHM > FHME > FHMEI. The ouabain-sensitive Na+/K+-ATPase activity of each mutant was significantly lower than that of the wild-type protein, and there was no significant difference among all mutant groups. Whole-cell voltage-clamp recordings in HEK293T cells showed that the ouabain-sensitive pump currents of G615R were significantly reduced, while those of G762S and R938P were comparable to those of the wild-type strain. Conclusions ATP1A2 mutations cause phenotypes ranging from pure FHM to FHM with epilepsy and intellectual disability due to varying degrees of deficits in biochemical and electrophysiological properties of Na+/K+-ATPase. Mutations associated with intellectual disability presented with severe impairment of Na+/K+-ATPase. Whether epilepsy is accompanied, or the type of epilepsy did not seem to affect the degree of impairment of pump function.


2021 ◽  
Vol 2021 ◽  
pp. 1-4
Author(s):  
Benjamin Stampfl ◽  
Dominic Fee

CACNA1A encodes the pore-forming α1 subunit of the neuronal voltage-gated Cav2.1 (P/Q-type) channels, which are predominantly localized at the presynaptic terminals of the brain and cerebellar neurons and play an important role in controlling neurotransmitter release. Mutations in CACNA1A have been associated with several autosomal dominant neurologic disorders, including familial hemiplegic migraine type 1, episodic ataxia type 2 (EA2), and spinocerebellar ataxia type 6. A 37-year-old woman presented with a history of slowly progressive, activity-induced stiffness, and pain in her right leg since age 15 and cervical dystonia since age 20. She denied any right leg stiffness or pain at rest, but when she began to walk, her right foot turned in and her right leg stiffened up. She also had neck pain, stiffness, and spams. There was no family history of similar symptoms. On physical exam, her strength, tone, and reflexes were normal in all extremities at rest. There was mild head titubation and very mild past pointing on finger-to-nose testing. MRI of the brain and spinal cord was unremarkable. This patient’s clinical picture was felt to be most consistent with paroxysmal kinesigenic dyskinesia, as she has attacks of dystonia that are triggered by voluntary movement, last from a few seconds to a minute, and are relieved with rest. She was trialed on carbidopa/levodopa without improvement. A dystonia panel showed two potentially pathologic mutations, one in CACNA1A and the other in PNKP, along with a variant of unknown significance in ATP7B. The mutation in CACNA1A is C2324 G < A. It is heterozygous, autosomal dominant, and computer modeling suggests pathogenicity. This mutation has not been reported previously and is likely the cause of her paroxysmal dystonia; dystonia is sometimes seen during episodes of ataxia in EA2, and CACNA1A knockout mice exhibit dystonia and cerebellar atrophy. After receiving her genetic diagnosis, the patient was trialed on acetazolamide without improvement in her dystonia symptoms. This is the second case report of a patient with cervical dystonia and cerebellar ataxia associated with a mutation in CACNA1A.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Marina Romozzi ◽  
Guido Primiano ◽  
Eleonora Rollo ◽  
Lorena Travaglini ◽  
Paolo Calabresi ◽  
...  

Abstract Background and aims Hemiplegic migraine (HM) is a rare form of migraine characterized by the presence of a motor and other types of aura. HM can be sporadic or familial. Familial hemiplegic migraine (FHM) is an autosomal dominant disorder, classified into 3 subtypes, based on the gene involved (CACNA1A in FHM1, ATP1A2 in FHM2 and SCN1A in FHM3). The clinical presentation is highly heterogeneous and some attacks may be severe. We report the clinical characteristics and genetic analysis of 12 patients belonging to a family with CACNA1A-p.Thr501Met gene mutation. Methods We screened for mutations in CACNA1A gene 15 patients belonging to the same family. The exonic sequences of CACNA1A were analyzed using a Tru-seq® Custom Amplicon (TSCA) (Illumina Inc., San Diego, CA) targeted capture and paired end library kit. Sanger sequencing was used to confirm CACNA1A variants and segregation analysis. Results CACNA1A-p.Thr501Met mutation was found in 12 of the 15 patients screened, which was compatible with the diagnosis of FHM1. Attacks of hemiplegic migraine were reported by 10 of the 12 subjects (83.33%). Only one subject developed persistent mild cerebellar symptoms and none of the subjects developed cerebellar atrophy. Discussion The variant p.Thr501Met was described previously in association with episodic ataxia and rarely with FHM related to cerebellar symptoms. FHM1 has a broad clinical spectrum and about half of the families have cerebellar involvement. In our study, only one patient developed persistent cerebellar deficits. These data suggest that CACNA1A-p.Thr501Met mutation can occur prevalently as hemiplegic migraine.


2021 ◽  
pp. 105424
Author(s):  
Anisa Dehghani ◽  
Thas Phisonkunkasem ◽  
Sinem Yilmaz Ozcan ◽  
Turgay Dalkara ◽  
Arn M.J.M. van den Maagdenberg ◽  
...  

2021 ◽  
Vol 15 ◽  
Author(s):  
Alina Suleimanova ◽  
Max Talanov ◽  
Arn M. J. M. van den Maagdenberg ◽  
Rashid Giniatullin

Familial hemiplegic migraine type 3 (FHM3) is caused by gain-of-function mutations in the SCN1A gene that encodes the α1 subunit of voltage-gated NaV1.1 sodium channels. The high level of expression of NaV1.1 channels in peripheral trigeminal neurons may lead to abnormal nociceptive signaling thus contributing to migraine pain. NaV1.1 dysfunction is relevant also for other neurological disorders, foremost epilepsy and stroke that are comorbid with migraine. Here we used computer modeling to test the functional role of FHM3-mutated NaV1.1 channels in mechanisms of trigeminal pain. The activation of Aδ-fibers was studied for two algogens, ATP and 5-HT, operating through P2X3 and 5-HT3 receptors, respectively, at trigeminal nerve terminals. In WT Aδ-fibers of meningeal afferents, NaV1.1 channels efficiently participate in spike generation induced by ATP and 5-HT supported by NaV1.6 channels. Of the various FHM3 mutations tested, the L263V missense mutation, with a longer activation state and lower activation voltage, resulted in the most pronounced spiking activity. In contrast, mutations that result in a loss of NaV1.1 function largely reduced firing of trigeminal nerve fibers. The combined activation of P2X3 and 5-HT3 receptors and branching of nerve fibers resulted in very prolonged and high-frequency spiking activity in the mutants compared to WT. We identified, in silico, key determinants of long-lasting nociceptive activity in FHM3-mutated Aδ-fibers that naturally express P2X3 and 5-HT3 receptors and suggest mutant-specific correction options. Modeled trigeminal nerve firing was significantly higher for FHM3 mutations, compared to WT, suggesting that pronounced nociceptive signaling may contribute to migraine pain.


2021 ◽  
Vol 15 ◽  
Author(s):  
Riffat Mehboob ◽  
Anna Marchenkova ◽  
Arn M. J. M. van den Maagdenberg ◽  
Andrea Nistri

Trigeminal sensory neurons of transgenic knock-in (KI) mice expressing the R192Q missense mutation in the α1A subunit of neuronal voltage-gated CaV2.1 Ca2+ channels, which leads to familial hemiplegic migraine type 1 (FHM1) in patients, exhibit a hyperexcitability phenotype. Here, we show that the expression of NaV1.7 channels, linked to pain states, is upregulated in KI primary cultures of trigeminal ganglia (TG), as shown by increased expression of its α1 subunit. In the majority of TG neurons, NaV1.7 channels are co-expressed with ATP-gated P2X3 receptors (P2X3R), which are important nociceptive sensors. Reversing the trigeminal phenotype with selective CaV2.1 channel inhibitor ω-agatoxin IVA inhibited NaV1.7 overexpression. Functionally, KI neurons revealed a TTX-sensitive inward current of larger amplitude that was partially inhibited by selective NaV1.7 blocker Tp1a. Under current-clamp condition, Tp1a raised the spike threshold of both wild-type (WT) and KI neurons with decreased firing rate in KI cells. NaV1.7 activator OD1 accelerated firing in WT and KI neurons, a phenomenon blocked by Tp1a. Enhanced expression and function of NaV1.7 channels in KI TG neurons resulted in higher excitability and facilitated nociceptive signaling. Co-expression of NaV1.7 channels and P2X3Rs in TGs may explain how hypersensitivity to local stimuli can be relevant to migraine.


Sign in / Sign up

Export Citation Format

Share Document