scholarly journals Chitin-induced systemic disease resistance in rice requires both OsCERK1 and OsCEBiP and is mediated via perturbation of cell-wall biogenesis in leaves

2021 ◽  
Author(s):  
Momoko Takagi ◽  
Kei Hotamori ◽  
Keigo Naito ◽  
Sumire Matsukawa ◽  
Mayumi Egusa ◽  
...  

SummaryChitin is a well-known elicitor of disease resistance whose recognition by plants is crucial to perceive fungal infections. Chitin can induce both a local immune response and a systemic disease resistance when provided as a supplement in soils. Unlike local immune responses, how chitin-induced systemic disease resistance is deployed has not been studied in detail.In this study, we evaluated systemic disease resistance against the fungal pathogen Bipolaris oryzae by performing a transcriptome analysis and monitoring cell-wall composition in rice plants grown in chitin-supplemented soils. We also examined the local immune response to chitin by measuring the production of reactive oxygen species in leaves.Chitins induced both local immune response and systemic disease resistance with differing requirements for the receptors OsCERK1 and OsCEBiP. Transcriptome analysis suggested that a perturbation in cell-wall biogenesis is involved in the induction of systemic disease resistance, an idea which was supported by the induction of disease resistance by treatment with a cellulose biosynthesis inhibitor and alterations of cell-wall composition.These findings suggest that chitin-induced systemic disease resistance in rice is caused by a perturbation of cell-wall biogenesis in leaves through long-distance signalling after recognition of chitins by OsCERK1 and OsCEBiP.

2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Jiangxue Wan ◽  
Min He ◽  
Qingqing Hou ◽  
Lijuan Zou ◽  
Yihua Yang ◽  
...  

AbstractThe plant cell wall is the first physical and defensive barrier against pathogens. The plant cell wall usually undergoes dynamic remodeling as an immune response to prevent infection by pathogens. In this review, we summarize advances on relationship between cell wall and immunity in plants. In particular, we outline current progresses regarding the regulation of the cell wall components, including cellulose, hemicellulose, pectin and lignin, on plant disease resistance. We also discuss the impacts of cell wall-derived cellodextrin, oligogalacturonic acid and xyloglucan/xylan oligosaccharides as potent elicitors or signal molecules to trigger plant immune response. We further propose future studies on dissecting the molecular regulation of cell wall on plant immunity, which have potentials in practical application of crop breeding aiming at improvement of plant disease resistance.


2018 ◽  
Author(s):  
Akiva Shalit-Kaneh ◽  
Tamar Eviatar–Ribak ◽  
Guy Horev ◽  
Naomi Suss ◽  
Roni Aloni ◽  
...  

AbstractThe protein hormone florigen is a universal systemic inducer of flowering and a generic growth terminator across meristems. To understand the developmental rational for its pleiotropic functions and to uncover the deep cellular systems mobilized by florigen beyond flowering we explored termination of radial expansion of stems. Employing the power of tomato genetics along with RNAseq and histological validations we show that endogenous, mobile, or induced florigen accelerates secondary cell wall biogenesis (SCWB), and hence vascular maturation, independently of flowering. This finding is supported by a systemic florigen antagonist from the non-floweringGinkgo biloba, which arrests SCWB and byMADSandMIFgenes downstream of florigen that similarly suppress or enhance, respectively, vascular maturation independent of flowering. We also show that florigen is remarkably stable and distributed to all organs regardless of existing endogenous levels. By accelerating SCWB, florigen reprograms the distribution of resources, signals and mechanical loads required for the ensuing reproductive phase it had originally set into motion.Developmental HighlightsFlorigen accelerates SCWB: A prime case for a long-range regulation of a complete metabolic network by a plant hormone.The dual acceleration of flowering and vascular maturation by Florigen provides a paradigm for a dynamic regulation of global, independent, developmental programs.The growth termination functions of florigen and the auto-regulatory mechanism for its production and distribution provide a communication network enveloping the shoot system.A stable florigen provides a possible mechanism for the quantitative regulation of floweringLateral stimulation of xylem differentiation links the phloem-travelling florigen with the annual rings in trunks.MADS genes are common relay partners in Florigen circuits; vascular maturation in stems and reproductive transition in apical meristems.


2020 ◽  
Vol 33 (5) ◽  
pp. 767-780 ◽  
Author(s):  
Laura Bacete ◽  
Hugo Mélida ◽  
Gemma López ◽  
Patrick Dabos ◽  
Dominique Tremousaygue ◽  
...  

The cytokinin signaling pathway, which is mediated by Arabidopsis response regulator (ARR) proteins, has been involved in the modulation of some disease-resistance responses. Here, we describe novel functions of ARR6 in the control of plant disease-resistance and cell-wall composition. Plants impaired in ARR6 function (arr6) were more resistant and susceptible, respectively, to the necrotrophic fungus Plectosphaerella cucumerina and to the vascular bacterium Ralstonia solanacearum, whereas Arabidopsis plants that overexpress ARR6 showed the opposite phenotypes, which further support a role of ARR6 in the modulation of disease-resistance responses against these pathogens. Transcriptomics and metabolomics analyses revealed that, in arr6 plants, canonical disease-resistance pathways, like those activated by defensive phytohormones, were not altered, whereas immune responses triggered by microbe-associated molecular patterns were slightly enhanced. Cell-wall composition of arr6 plants was found to be severely altered compared with that of wild-type plants. Remarkably, pectin-enriched cell-wall fractions extracted from arr6 walls triggered more intense immune responses than those activated by similar wall fractions from wild-type plants, suggesting that arr6 pectin fraction is enriched in wall-related damage-associated molecular patterns, which trigger immune responses. This work supports a novel function of ARR6 in the control of cell-wall composition and disease resistance and reinforces the role of the plant cell wall in the modulation of specific immune responses.


Sign in / Sign up

Export Citation Format

Share Document