Stress Biology
Latest Publications


TOTAL DOCUMENTS

27
(FIVE YEARS 27)

H-INDEX

0
(FIVE YEARS 0)

Published By Springer Science And Business Media LLC

2731-0450

2022 ◽  
Vol 2 (1) ◽  
Author(s):  
Bo Yang ◽  
Sen Yang ◽  
Wenyue Zheng ◽  
Yuanchao Wang

AbstractWhile conventional chemical fungicides directly eliminate pathogens, plant immunity inducers activate or prime plant immunity. In recent years, considerable progress has been made in understanding the mechanisms of immune regulation in plants. The development and application of plant immunity inducers based on the principles of plant immunity represent a new field in plant protection research. In this review, we describe the mechanisms of plant immunity inducers in terms of plant immune system activation, summarize the various classes of reported plant immunity inducers (proteins, oligosaccharides, chemicals, and lipids), and review methods for the identification or synthesis of plant immunity inducers. The current situation, new strategies, and future prospects in the development and application of plant immunity inducers are also discussed.


2022 ◽  
Vol 2 (1) ◽  
Author(s):  
Sunil K. Singh ◽  
Xiaoxuan Wu ◽  
Chuyang Shao ◽  
Huiming Zhang

AbstractNutrient availability is a determining factor for crop yield and quality. While fertilization is a major approach for improving plant nutrition, its efficacy can be limited and the production and application of fertilizers frequently bring problems to the environment. A large number of soil microbes are capable of enhancing plant nutrient acquisition and thereby offer environmentally benign solutions to meet the requirements of plant nutrition. Herein we provide summations of how beneficial microbes enhance plant acquisition of macronutrients and micronutrients. We also review recent studies on nutrition-dependent plant-microbe interactions, which highlight the plant’s initiative in establishing or deterring the plant-microbe association. By dissecting complex signaling interactions between microbes within the root microbiome, a greater understanding of microbe-enhanced plant nutrition under specific biotic and abiotic stresses will be possible.


2022 ◽  
Vol 2 (1) ◽  
Author(s):  
Jia Yuan Ye ◽  
Wen Hao Tian ◽  
Chong Wei Jin

AbstractNitrogen is one of the most important nutrient for plant growth and development; it is strongly associated with a variety of abiotic stress responses. As sessile organisms, plants have evolved to develop efficient strategies to manage N to support growth when exposed to a diverse range of stressors. This review summarizes the recent progress in the field of plant nitrate (NO3-) and ammonium (NH4+) uptake, which are the two major forms of N that are absorbed by plants. We explore the intricate relationship between NO3-/NH4+ and abiotic stress responses in plants, focusing on stresses from nutrient deficiencies, unfavorable pH, ions, and drought. Although many molecular details remain unclear, research has revealed a number of core signaling regulators that are associated with N-mediated abiotic stress responses. An in-depth understanding and exploration of the molecular processes that underpin the interactions between N and abiotic stresses is useful in the design of effective strategies to improve crop growth, development, and productivity.


2022 ◽  
Vol 2 (1) ◽  
Author(s):  
Irene N. Gentzel ◽  
Erik W. Ohlson ◽  
Margaret G. Redinbaugh ◽  
Guo-Liang Wang

AbstractAgricultural production is hampered by disease, pests, and environmental stresses. To minimize yield loss, it is important to develop crop cultivars with resistance or tolerance to their respective biotic and abiotic constraints. Transformation techniques are not optimized for many species and desirable cultivars may not be amenable to genetic transformation, necessitating inferior cultivar usage and time-consuming introgression through backcrossing to the preferred variety. Overcoming these limitations will greatly facilitate the development of disease, insect, and abiotic stress tolerant crops. One such avenue for rapid crop improvement is the development of viral systems to deliver CRISPR/Cas-based genome editing technology to plants to generate targeted beneficial mutations. Viral delivery of genomic editing constructs can theoretically be applied to span the entire host range of the virus utilized, circumventing the challenges associated with traditional transformation and breeding techniques. Here we explore the types of viruses that have been optimized for CRISPR/Cas9 delivery, the phenotypic outcomes achieved in recent studies, and discuss the future potential of this rapidly advancing technology.


2022 ◽  
Vol 2 (1) ◽  
Author(s):  
Jianfei Guo ◽  
Xiaoqiang Chai ◽  
Yuchao Mei ◽  
Jiamu Du ◽  
Haining Du ◽  
...  

AbstractLysine-ε-acetylation (Kac) is a post-translational modification (PTM) that is critical for metabolic regulation and cell signaling in mammals. However, its prevalence and importance in plants remain to be determined. Employing high-resolution tandem mass spectrometry, we analyzed protein lysine acetylation in five representative Arabidopsis organs with 2 ~ 3 biological replicates per organ. A total of 2887 Kac proteins and 5929 Kac sites were identified. This comprehensive catalog allows us to analyze proteome-wide features of lysine acetylation. We found that Kac proteins tend to be more uniformly expressed in different organs, and the acetylation status exhibits little correlation with the gene expression level, indicating that acetylation is unlikely caused by stochastic processes. Kac preferentially targets evolutionarily conserved proteins and lysine residues, but only a small percentage of Kac proteins are orthologous between rat and Arabidopsis. A large portion of Kac proteins overlap with proteins modified by other PTMs including ubiquitination, SUMOylation and phosphorylation. Although acetylation, ubiquitination and SUMOylation all modify lysine residues, our analyses show that they rarely target the same sites. In addition, we found that “reader” proteins for acetylation and phosphorylation, i.e., bromodomain-containing proteins and GRF (General Regulatory Factor)/14-3-3 proteins, are intensively modified by the two PTMs, suggesting that they are main crosstalk nodes between acetylation and phosphorylation signaling. Analyses of GRF6/14-3-3λ reveal that the Kac level of GRF6 is decreased under alkaline stress, suggesting that acetylation represses plant alkaline response. Indeed, K56ac of GRF6 inhibits its binding to and subsequent activation of the plasma membrane H+-ATPase AHA2, leading to hypersensitivity to alkaline stress. These results provide valuable resources for protein acetylation studies in plants and reveal that protein acetylation suppresses phosphorylation output by acetylating GRF/14-3-3 proteins.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Yakubu Saddeeq Abubakar ◽  
Han Qiu ◽  
Wenqin Fang ◽  
Huawei Zheng ◽  
Guodong Lu ◽  
...  

AbstractThe retromer complex, composed of the cargo-selective complex (CSC) Vps35-Vps29-Vps26 in complex with the sorting nexin dimer Vps5-Vps17, mediates the sorting and retrograde transport of cargo proteins from the endosomes to the trans-Golgi network in eukaryotic cells. Rab proteins belong to the Ras superfamily of small GTPases and regulate many trafficking events including vesicle formation, budding, transport, tethering, docking and fusion with target membranes. Herein, we investigated the potential functional relationship between the retromer complex and the 11 Rab proteins that exist in Fusarium graminearum using genetic and high-resolution laser confocal microscopic approaches. We found that only FgRab5 (FgRab5A and FgRab5B) and FgRab7 associate with the retromer complex. Both FgVps35-GFP and FgVps17-GFP are mis-localized and appear diffused in the cytoplasm of ΔFgrab5A, ΔFgrab5B and ΔFgrab7 mutants as compared to their punctate localization within the endosomes of the wild-type. FgRab7 and FgRab5B were found to co-localize with the retromer on endosomal membranes. Most strikingly, we found that these three Rab GTPases are indispensable for endosome biogenesis as both early and late endosomes could not be detected in the cells of the mutants after FM4-64 staining of the cells, while they were very clearly seen in the wild-type PH-1. Furthermore, FgRab7 was found to recruit FgVps35 but not FgVps17 to the endosomal membranes, whereas FgRab5B recruits both FgVps35 and FgVps17 to the membranes. Thus, we conclude that the Rab proteins FgRab5A, FgRab5B and FgRab7 play critical roles in the biogenesis of endosomes and in regulating retromer-mediated trafficking in F. graminearum.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Xiaohong Zhu ◽  
Shaojun Xie ◽  
Kai Tang ◽  
Rajwant K. Kalia ◽  
Na Liu ◽  
...  

2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Qianhua Wu ◽  
Bozhen Wang ◽  
Xi Shen ◽  
Danyu Shen ◽  
Bingxin Wang ◽  
...  

AbstractPlant growth-promoting rhizobacteria (PGPR) contain various biocontrol bacteria with broad-spectrum antimicrobial activity, and their single species has been extensively applied to control crop diseases. The development of complex biocontrol community by mixing two or more PGPR members together is a promising strategy to enlarge the efficacy and scope of biocontrol. However, an effective method to assess the natural compatibility of PGPR members has not yet been established to date. Here, we developed such a tool by using the bacterial contact-dependent antibacterial activity (CDAA) as a probe. We showed that the CDAA events are common in two-species interactions in the four selected representative PGPRs, represented by the incompatible interaction of Lysobacter enzymogenes strain OH11 (OH11) and Lysobacter antibioticus strain OH13 (OH13). We further showed that the CDAA between OH11 and OH13 is jointly controlled by a contact-dependent killing device, called the type IV secretion system (T4SS). By deleting the respective T4SS synthesis genes, the T4SS in both strains was co-inactivated and this step unlocked  their natural CDAA, resulting in an engineered, compatible mutant alliance that co-displayed antibacterial and antifungal activity. Therefore, this study reveals that releasing bacterial CDAA is effective to rationally engineer the biocontrol community.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Yunqing Jian ◽  
Won-Bo Shim ◽  
Zhonghua Ma

AbstractThe SWI/SNF chromatin remodeling complex utilizes the energy of ATP hydrolysis to facilitate chromatin access and plays essential roles in DNA-based events. Studies in animals, plants and fungi have uncovered sophisticated regulatory mechanisms of this complex that govern development and various stress responses. In this review, we summarize the composition of SWI/SNF complex in eukaryotes and discuss multiple functions of the SWI/SNF complex in regulating gene transcription, mRNA splicing, and DNA damage response. Our review further highlights the importance of SWI/SNF complex in regulating plant immunity responses and fungal pathogenesis. Finally, the potentials in exploiting chromatin remodeling for management of crop disease are presented.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Yiming Wang ◽  
Soumeng Dong

AbstractBreeding of disease-resistant and high-yield crops is essential to meet the increasing food demand of the global population. However, the breeding of such crops remains a significant challenge for scientists and breeders. Two recent discoveries may help to overcome this challenge: the discovery of a novel molecular framework to fine-tune disease resistance and yields that includes epigenetic regulation of antagonistic immune receptors, and the discovery of a Ca2+ sensor-mediated immune repression network that enables the transfer of subspecies-specific and broad-spectrum disease resistance. These breakthroughs provide a promising roadmap for the future breeding of disease resistant crops.


Sign in / Sign up

Export Citation Format

Share Document