scholarly journals The Flowering Hormone Florigen Accelerates Secondary Cell Wall Biogenesis to Harmonize Vascular Maturation with Reproductive Development

2018 ◽  
Author(s):  
Akiva Shalit-Kaneh ◽  
Tamar Eviatar–Ribak ◽  
Guy Horev ◽  
Naomi Suss ◽  
Roni Aloni ◽  
...  

AbstractThe protein hormone florigen is a universal systemic inducer of flowering and a generic growth terminator across meristems. To understand the developmental rational for its pleiotropic functions and to uncover the deep cellular systems mobilized by florigen beyond flowering we explored termination of radial expansion of stems. Employing the power of tomato genetics along with RNAseq and histological validations we show that endogenous, mobile, or induced florigen accelerates secondary cell wall biogenesis (SCWB), and hence vascular maturation, independently of flowering. This finding is supported by a systemic florigen antagonist from the non-floweringGinkgo biloba, which arrests SCWB and byMADSandMIFgenes downstream of florigen that similarly suppress or enhance, respectively, vascular maturation independent of flowering. We also show that florigen is remarkably stable and distributed to all organs regardless of existing endogenous levels. By accelerating SCWB, florigen reprograms the distribution of resources, signals and mechanical loads required for the ensuing reproductive phase it had originally set into motion.Developmental HighlightsFlorigen accelerates SCWB: A prime case for a long-range regulation of a complete metabolic network by a plant hormone.The dual acceleration of flowering and vascular maturation by Florigen provides a paradigm for a dynamic regulation of global, independent, developmental programs.The growth termination functions of florigen and the auto-regulatory mechanism for its production and distribution provide a communication network enveloping the shoot system.A stable florigen provides a possible mechanism for the quantitative regulation of floweringLateral stimulation of xylem differentiation links the phloem-travelling florigen with the annual rings in trunks.MADS genes are common relay partners in Florigen circuits; vascular maturation in stems and reproductive transition in apical meristems.

2019 ◽  
Vol 116 (32) ◽  
pp. 16127-16136 ◽  
Author(s):  
Akiva Shalit-Kaneh ◽  
Tamar Eviatar-Ribak ◽  
Guy Horev ◽  
Naomi Suss ◽  
Roni Aloni ◽  
...  

Florigen, a proteinaceous hormone, functions as a universal long-range promoter of flowering and concurrently as a generic growth-attenuating hormone across leaf and stem meristems. In flowering plants, the transition from the vegetative phase to the reproductive phase entails the orchestration of new growth coordinates and a global redistribution of resources, signals, and mechanical loads among organs. However, the ultimate cellular processes governing the adaptation of the shoot system to reproduction remain unknown. We hypothesized that if the mechanism for floral induction is universal, then the cellular metabolic mechanisms underlying the conditioning of the shoot system for reproduction would also be universal and may be best regulated by florigen itself. To understand the cellular basis for the vegetative functions of florigen, we explored the radial expansion of tomato stems. RNA-Seq and complementary genetic and histological studies revealed that florigen of endogenous, mobile, or induced origins accelerates the transcription network navigating secondary cell wall biogenesis as a unit, promoting vascular maturation and thereby adapting the shoot system to the developmental needs of the ensuing reproductive phase it had originally set into motion. We then demonstrated that a remarkably stable and broadly distributed florigen promotes MADS and MIF genes, which in turn regulate the rate of vascular maturation and radial expansion of stems irrespective of flowering or florigen level. The dual acceleration of flowering and vascular maturation by florigen provides a paradigm for coordinated regulation of independent global developmental programs.


2021 ◽  
Author(s):  
Momoko Takagi ◽  
Kei Hotamori ◽  
Keigo Naito ◽  
Sumire Matsukawa ◽  
Mayumi Egusa ◽  
...  

SummaryChitin is a well-known elicitor of disease resistance whose recognition by plants is crucial to perceive fungal infections. Chitin can induce both a local immune response and a systemic disease resistance when provided as a supplement in soils. Unlike local immune responses, how chitin-induced systemic disease resistance is deployed has not been studied in detail.In this study, we evaluated systemic disease resistance against the fungal pathogen Bipolaris oryzae by performing a transcriptome analysis and monitoring cell-wall composition in rice plants grown in chitin-supplemented soils. We also examined the local immune response to chitin by measuring the production of reactive oxygen species in leaves.Chitins induced both local immune response and systemic disease resistance with differing requirements for the receptors OsCERK1 and OsCEBiP. Transcriptome analysis suggested that a perturbation in cell-wall biogenesis is involved in the induction of systemic disease resistance, an idea which was supported by the induction of disease resistance by treatment with a cellulose biosynthesis inhibitor and alterations of cell-wall composition.These findings suggest that chitin-induced systemic disease resistance in rice is caused by a perturbation of cell-wall biogenesis in leaves through long-distance signalling after recognition of chitins by OsCERK1 and OsCEBiP.


Author(s):  
David Montezinos ◽  
R. Malcolm Brown

Patterned arrays of cellulosic microfibrils are found in the secondary cell wall of Oocystis apiculata W. West. Although mechanisms for the biogenesis of the organized cell wall have not yet ben elucidated, roles for the plasma membrane and microtubules in wall production have been suggested. Continuing Study of Oocystis has provided new data on the complex process of organized cell wall biogenesis.


2005 ◽  
Vol 137 (3) ◽  
pp. 983-997 ◽  
Author(s):  
Henrik Aspeborg ◽  
Jarmo Schrader ◽  
Pedro M. Coutinho ◽  
Mark Stam ◽  
Åsa Kallas ◽  
...  

2008 ◽  
Vol 59 (14) ◽  
pp. 3925-3939 ◽  
Author(s):  
Claude Bomal ◽  
Frank Bedon ◽  
Sébastien Caron ◽  
Shawn D. Mansfield ◽  
Caroline Levasseur ◽  
...  

Genes ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 20
Author(s):  
Fernando Manuel Matias Hurtado ◽  
Maísa de Siqueira Pinto ◽  
Perla Novais de Oliveira ◽  
Diego Mauricio Riaño-Pachón ◽  
Laura Beatriz Inocente ◽  
...  

NAC proteins are one of the largest families of plant-specific transcription factors (TFs). They regulate diverse complex biological processes, including secondary xylem differentiation and wood formation. Recent genomic and transcriptomic studies of Tectona grandis L.f. (teak), one of the most valuable hardwood trees in the world, have allowed identification and analysis of developmental genes. In the present work, T. grandis NAC genes were identified and analyzed regarding to their evolution and expression profile during wood formation. We analyzed the recently published T. grandis genome, and identified 130 NAC proteins that are coded by 107 gene loci. These proteins were classified into 23 clades of the NAC family, together with Populus, Eucalyptus, and Arabidopsis. Data on transcript expression revealed specific temporal and spatial expression patterns for the majority of teak NAC genes. RT-PCR indicated expression of VND genes (Tg11g04450-VND2 and Tg15g08390-VND4) related to secondary cell wall formation in xylem vessels of 16-year-old juvenile trees. Our findings open a way to further understanding of NAC transcription factor genes in T. grandis wood biosynthesis, while they are potentially useful for future studies aiming to improve biomass and wood quality using biotechnological approaches.


2009 ◽  
Vol 2009 ◽  
pp. 1-8 ◽  
Author(s):  
James J. Bolton ◽  
Khairy M. Soliman ◽  
Thea A. Wilkins ◽  
Johnie N. Jenkins

Over ninety percent of the value of cotton comes from its fiber; however, the genetic mechanisms governing fiber development are poorly understood. Due to their biochemical and morphological diversity in fiber cells cotton fiber mutants have been useful in examining fiber development; therefore, using the Ligon Lintless (Li-1) mutant, a monogenic dominant cotton mutant with very short fibers, we employed the high throughput approaches of microarray technology and real time PCR to gain insights into what genes were critical during the secondary cell wall synthesis stage. Comparative transcriptome analysis of the normal TM-1 genotype and the near isogenicLi-1 revealed that over 100 transcripts were differentially expressed at least 2-fold during secondary wall biogenesis, although the genetic profile of the expansion phase showed no significant differences in the isolines. Of particular note, we identified three candidate gene families-expansin, sucrose synthase, and tubulin—whose expression inLi-1 deviates from normal expression patterns of its parent, TM-1. These genes may contribute to retarded growth of fibers inLi-1 since they are fiber-expressed structural and metabolic genes. This work provides more details into the mechanisms of fiber development, and suggests theLigene is active during the later stages of fiber development.


2021 ◽  
Author(s):  
Carolin Seyfferth ◽  
Bernard A Wessels ◽  
Jorma Vahala ◽  
Jaakko Kangasjarvi ◽  
Nicolas Delhomme ◽  
...  

Secondary growth relies on precise and specialized transcriptional networks that determine cell division, differentiation, and maturation of xylem cells. We identify a novel role for the ethylene induced Populus ETHYLENE RESPONSE FACTOR ERF85 (Potri.015G023200) in balancing xylem cell expansion and secondary cell wall (SCW) formation in hybrid aspen (Populus tremula x tremuloides). Expression of ERF85 is high in phloem and cambium cells and during expansion of xylem cells, while it is low in maturing xylem tissue. Extending ERF85 expression into SCW forming zones of woody tissues through ectopic expression reduced wood density and SCW thickness of xylem fibers but increased fiber diameter. Xylem transcriptomes from the transgenic trees revealed transcriptional induction of genes involved in cell expansion, translation and growth. Expression of genes associated with plant vascular development and biosynthesis of SCW chemical components such as xylan and lignin, was downregulated in the transgenic trees. Our results suggest that ERF85 activates genes related with xylem cell expansion, while preventing transcriptional activation of genes related to SCW formation. The importance of precise spatial expression of ERF85 during wood development together with the observed phenotypes in response to ectopic ERF85 expression suggests that ERF85 functions as a switch between different phases of xylem differentiation during wood formation.


Sign in / Sign up

Export Citation Format

Share Document