scholarly journals Distinct within-host bacterial populations ensure function, colonization and transmission in leaf symbiosis

2021 ◽  
Author(s):  
Tessa Acar ◽  
Sandra Moreau ◽  
Olivier Coen ◽  
Frédéric De Meyer ◽  
Olivier Leroux ◽  
...  

AbstractHereditary symbioses have the potential to drive transgenerational effects, yet the mechanisms responsible for transmission of heritable plant symbionts are still poorly understood. The leaf symbiosis between Dioscorea sansibarensis and the bacterium Orrella dioscoreae offers an appealing model system to study how heritable bacteria are transmitted to the next generation. Here, we demonstrate that inoculation of apical buds with a bacterial suspension is sufficient to colonize newly-formed leaves and propagules, and to ensure transmission to the next plant generation. Flagellar motility is not required for movement inside the plant, but is important for the colonization of new hosts. Further, stringent tissue-specific regulation of putative symbiotic functions highlight the presence of two distinct subpopulations of bacteria in the leaf gland and at the shoot meristem. We propose that bacteria in the leaf gland dedicate resources to symbiotic functions, while dividing bacteria in the shoot tip ensure successful colonization of meristematic tissue, glands and propagules. Compartmentalization of intra-host populations, together with tissue-specific regulation may serve as a robust mechanism for the maintenance of mutualism in leaf symbiosis.ImportanceSeveral plant species form associations with bacteria in their leaves, called leaf symbiosis. These associations are highly specific, but the mechanisms responsible for symbiont transmission are poorly understood. Using the association between the yam species Dioscorea sansibarensis and Orrella dioscoreae as a model leaf symbiosis, we provide experimental evidence that bacteria are transmitted vertically and distributed to specific leaf structures via association with shoot meristems. Flagellar motility is required for initial infection, but does not contribute to spread within host tissue. We also provide evidence that bacterial subpopulations at the meristem or in the symbiotic leaf gland differentially express key symbiotic genes. We argue that this separation of functional symbiont populations, coupled to tight control over bacterial infection and transmission, explain the evolutionary robustness of leaf symbiosis. These findings may provide insights into how plants may recruit and maintain beneficial symbionts at the leaf surface.

1991 ◽  
Vol 266 (36) ◽  
pp. 24613-24620
Author(s):  
A. Subramaniam ◽  
W.K. Jones ◽  
J. Gulick ◽  
S. Wert ◽  
J. Neumann ◽  
...  

1998 ◽  
Vol 329 (1) ◽  
pp. 191-196 ◽  
Author(s):  
Melissa M. BOWKER-KINLEY ◽  
I. Wilhelmina DAVIS ◽  
Pengfei WU ◽  
A. Robert HARRIS ◽  
M. Kirill POPOV

Tissue distribution and kinetic parameters for the four isoenzymes of pyruvate dehydrogenase kinase (PDK1, PDK2, PDK3 and PDK4) identified thus far in mammals were analysed. It appeared that expression of these isoenzymes occurs in a tissue-specific manner. The mRNA for isoenzyme PDK1 was found almost exclusively in rat heart. The mRNA for PDK3 was most abundantly expressed in rat testis. The message for PDK2 was present in all tissues tested but the level was low in spleen and lung. The mRNA for PDK4 was predominantly expressed in skeletal muscle and heart. The specific activities of the isoenzymes varied 25-fold, from 50 nmol/min per mg for PDK2 to 1250 nmol/min per mg for PDK3. Apparent Ki values of the isoenzymes for the synthetic analogue of pyruvate, dichloroacetate, varied 40-fold, from 0.2 mM for PDK2 to 8 mM for PDK3. The isoenzymes were also different with respect to their ability to respond to NADH and NADH plus acetyl-CoA. NADH alone stimulated the activities of PDK1 and PDK2 by 20 and 30% respectively. NADH plus acetyl-CoA activated these isoenzymes nearly 200 and 300%. Under comparable conditions, isoenzyme PDK3 was almost completely unresponsive to NADH, and NADH plus acetyl-CoA caused inhibition rather than activation. Isoenzyme PDK4 was activated almost 2-fold by NADH, but NADH plus acetyl-CoA did not activate above the level seen with NADH alone. These results provide the first evidence that the unique tissue distribution and kinetic characteristics of the isoenzymes of PDK are among the major factors responsible for tissue-specific regulation of the pyruvate dehydrogenase complex activity.


2012 ◽  
Vol 30 (01) ◽  
pp. 14-22 ◽  
Author(s):  
Dale Leitman ◽  
Sreenivasan Paruthiyil ◽  
Chaoshen Yuan ◽  
Candice Herber ◽  
Moshe Olshansky ◽  
...  

Peptides ◽  
1997 ◽  
Vol 18 (6) ◽  
pp. 801-808 ◽  
Author(s):  
Martin Labelle ◽  
Yvan Boulanger ◽  
Alain Fournier ◽  
Serge St.-Pierre ◽  
Roland Savard

2001 ◽  
Vol 106 (1-2) ◽  
pp. 97-106 ◽  
Author(s):  
Elazar Zelzer ◽  
Donald J. Glotzer ◽  
Christine Hartmann ◽  
David Thomas ◽  
Naomi Fukai ◽  
...  

1984 ◽  
Vol 4 (10) ◽  
pp. 2151-2160
Author(s):  
S G Amara ◽  
R M Evans ◽  
M G Rosenfeld

Different 3' coding exons in the rat calcitonin gene are used to generate distinct mRNAs encoding either the hormone calcitonin in thyroidal C-cells or a new neuropeptide referred to as calcitonin gene-related peptide in neuronal tissue, indicating the RNA processing regulation is one strategy used in tissue-specific regulation of gene expression in the brain. Although the two mRNAs use the same transcriptional initiation site and have identical 5' terminal sequences, their 3' termini are distinct. The polyadenylation sites for calcitonin and calcitonin gene-related peptide mRNAs are located at the end of the exons 4 and 6, respectively. Termination of transcription after the calcitonin exon does not dictate the production of calcitonin mRNA, because transcription proceeds through both calcitonin and calcitonin gene-related peptide exons irrespective of which mRNA is ultimately produced. In isolated nuclei, both polyadenylation sites appear to be utilized; however, the proximal (calcitonin) site is preferentially used in nuclei from tissues producing calcitonin mRNA. These data suggest that the mechanism dictating production of each mRNA involves the selective use of alternative polyadenylation sites.


Sign in / Sign up

Export Citation Format

Share Document